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Abstract— Traffic incidents are recognized as a key contributor
to non-recurrent congestion, which causes many negative effects
in economy, environment, health and lifestyle. In this article,
we investigate an incident management policy considering both
signal control and route choice, which presents a real-time
systematic effort to provide a rapid recovery from an incident
and mitigate incident-related congestion according to different
incident effects. Firstly, we introduce a route choice method
on a multiple-route urban road network with consideration of
bottleneck delays. Then, we analyze the route travel costs under
incident effects and give the equilibrium existence condition after
the occurrence of an incident. Furthermore, combining with
the route choice method, a novel traffic signal control policy
is proposed and the condition for equilibrium existence is given
with the consideration of dynamic signal control and route choice
simultaneously. Sufficient conditions for the dynamic road system
to be stable are also derived and validated by using Lyapunov
stability theorem. The analytical results indicate that opposite
signal control policies should be applied in road networks under
different incident circumstances and the proposed control policy
can achieve the improved recovery rate and system stability than
existing control policies in terms of dynamic incident effects in
road networks. Finally, numerical results have been conducted
to demonstrate the effectiveness of our proposed incident control
policy and confirm the conditions for road system stability when
different incident circumstances had been identified.

Index Terms— Incident management, route choice, traffic sig-
nal control, equilibrium existence, system stability.

I. INTRODUCTION

TRAFFIC incidents are notorious for the delay caused
to road travelers, which accounts for one-quarter of all

congestion on U.S. roadways approximately [1], and every
minute that a lane is blocked leads to a 4-minute delay on the
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average [2]. These incidents such as accidents, stalled vehicles
and spilled loads often reduce roadway capacity, increase
the potential for additional secondary incidents and generate
negative effects on economy, environment and even people’s
health [3].

To mitigate these negative effects, traffic incident manage-
ment policies are adopted by transportation authorities world-
wide. According to an urban transportation report in 2007,
reducing incident-related congestion saved 129.5 million hours
and $2493 million in 272 U.S. urban areas [4]. Most existing
traffic incident management techniques in urban road networks
are based on incident detection [5]–[9], incident duration
estimation [10], [11] and incident signal control [12]–[14].
Firstly, a variety of methods have been utilized for incident
detection, such as video camera based methods [5], artificial
intelligence [6], vehicular networks [7], [8] and even social
media based approaches [9]. These methods help to reduce
the time between incident occurrence and its detection, which
provide traffic participants with early warnings and accident
rescue to mitigate negative effects of an incident. As another
widely used incident management method, incident duration
estimation can be utilized to provide travelers with timely
traffic information and implement appropriate route guidance
and diversion to mitigate the negative effects of non-recurrent
congestion [10], [11]. However, these incident management
methods only provide travelers with auxiliary traffic informa-
tion to avoid the potential congestion, which cannot yield a
real-time effective control policy to regulate the traffic flow
and mitigate incident-related congestion dynamically based on
different incident effects.

As an important and effective traffic control strategy, traffic
signal control has been widely applied, and plays an indis-
pensable role in managing road traffic flows and conflicting
requirements, particularly in urban traffic networks. Optimiza-
tion of traffic signals can alleviate congestion and reduce travel
time of vehicles, which is also seen as an effective way to
mitigate the negative incident effects and increase the road
capacity. Long et al. [12] developed a signal control strategy
and demonstrated its effectiveness in dispersing incident-based
traffic jams in a two-way rectangular grid network. In [13],
Huang et al. designed a traffic signal control systems based on
Timed Petri nets (TPNs) to provide emergency vehicles with
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Fig. 1. An illustration of the relationship between route choice and signal
control.

the highest priority, which can guarantee high speed and safety
of these vehicles to reduce incident clearance time and improve
traffic safety. Qi et al. [14] also adopted Petri nets (PNs) to
design a traffic signal control system at an incident intersec-
tion and its upstream intersections, which helped to reduce
incident-induced congestion and improved the real-time traffic
incident management at intersections. It should be noted that
in the aforementioned literature, traffic flows or route choice
strategies are considered to be fixed when incident happens
or traffic signal control policies change. However, as depicted
in Figure 1, route choice and traffic signal control often interact
with each other [15]. For example, route flow non-equilibrium
may cause the traffic control policy to change the green-time
proportion; such changes in turn give rise to changing route
travel cost, which further causes vehicles to change routes,
and the traffic network will be stable if and only if route
choice and traffic signal control can reach an equilibrium
simultaneously [15]. Moreover, there always exist a number
of routes for each traveler from the origin to destination
in urban road networks and the way that travelers choose
their routes under incidents is different from the choices
made under normal conditions. Therefore, when we propose a
signal control policy to mitigate incident-induced congestion,
both the route choice method and the signal control policy
should be considered and analyzed. In summary, few existing
works modeled the interactions between route choice and
traffic signal control under incident effects and investigated
the conditions for equilibrium existence and system stability.

To fill the gap, this article models the urban traffic system
under incident conditions considering both route choice and
signal control. The main emphases here are 1) to explore the
interactions between route choice and signal control when an
incident had been identified; and 2) to develop a responsive
signal control policy to improve the stability of road systems
under different incident circumstances. First, we introduce a
route choice method on a multiple-route network and present
an extension to further embrace bottleneck delays. Then, we
analyze the route travel costs with incident effects using
queueing theory and give the condition for the existence of a
new Wardrop equilibrium in the event of an incident. Finally,
a novel signal control policy incorporating the route choice
method is proposed under different incident circumstances
in road networks. The conditions for equilibrium existence
and system stability under these policies are investigated.

Numerical results and discussions are also presented in this
article which demonstrate the effectiveness of our proposed
signal control policy in improving the recovery rate and the
system stability of road network under incidents. More specif-
ically, the following contributions are made in this article:

• the traffic flow swap between multiple routes in a road
network is modeled considering the effect of an incident
and a condition is given that the road network can recover
to a new Wardrop equilibrium state after the occurrence
of an incident;

• with joint consideration of the route choice method, a
novel traffic signal control policy is proposed to mitigate
the negative effects of an incident, which can better
capture the interaction between route choice and traffic
signal control under incident circumstances, and improve
the recovery rate and the stability of road network systems
with incidents;

• based on the proposed control policy, the condition for the
existence of a new equilibrium after an incident is given
and the stability of the road network system is proved by
using Lyapunov stability theorem;

• analytical and numerical results demonstrate that opposite
signal control policies should be utilized in road systems
under different incident circumstances. If there is a minor
incident that a new equilibrium exists in the original
feasible region, the green-time proportion of the link
with an incident should be increased to improve the
convergence speed of dynamic road systems; and if there
is a serious incident that a new equilibrium exists outside
the original feasible region, the green-time proportion of
the incident link should be decreased to enhance the
recovery opportunity of road systems from a serious
incident and improve the system stability with random
disturbance.

The rest of the article is outlined as follows: Section II reviews
related works. Section III introduces a route choice model
with bottleneck delays in a general road network. Section IV
analyzes the impact of incidents on traffic flow routing and
gives the conditions that the road network can recover to a
new equilibrium after an incident. In Section V, with the joint
consideration of the route choice method, we propose a traffic
signal control policy under incident effects, give the condi-
tions for the existence of Wardrop equilibrium and prove the
stability of the road network system. Section VI provides the
numerical results to verify our theoretical findings. Section VII
concludes the article.

II. RELATED WORK

Wardrop and Whitehead [16] proposed the idea of traffic
equilibrium although the main idea dates back a long time
ago, which suggested that under equilibrium conditions traffic
arranges itself in congested networks such that all used routes
between an Origin-Destination (OD) pair have equal and
minimal costs, while all unused routes have greater or equal
costs. The equilibrium notion is relevant to many dynamic
systems and it is natural to seek such dynamical systems which
have some realism [17]. In [18], Lin et al. applied a macro-
scopic fundamental diagram (MFD) to develop the existence
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of network traffic flow equilibrium. Chen and Hu [19] focused
on the equilibrium considering the interaction between signal
setting and traffic assignment. Day-to-day traffic assignment
model is believed to be the most appropriate for analyzing
traffic equilibrium [20]. He et al. [20] proposed a day-to-day
traffic assignment model based on link flow variables, which
captured travelers’ cost-minimization behavior in their travel
path as well as their inertia. Zhao et al. [21] utilized day-
to-day traffic assignment models to capture the rerouting
reactions of travelers to advanced information and analyzed
the stability of an equilibrium for the dynamic evolution of
traffic costs and flows. Moreover, as a simple and intuitive
traffic assignment model, the proportional switch adjustment
process (PAP) has been widely used and extended to model
day-to-day traffic flow dynamics [15], [17], [20]–[23], due
to its intrinsic advantages: 1) traffic flow switches from a
higher cost path to a lower cost path which is consistent with
the individual travel behavior pursuing the least cost; 2) the
concise mathematical structure and intuitive route adjustment
behaviors enable PAP model to become versatile for the more
complex road networks and many traffic assignment problems.
Smith et al. developed the PAP dynamic traffic assignment
model and proposed a P0 control policy considering a day-
to-day route choice and traffic signal control. They showed
that the P0 policy can move stage green time and converge
to a certain equilibrium with vertical queueing [15] and also
maximize network throughput at a quasi-dynamic user equi-
librium [22]. In [23], Wang et al. applied PAP to model traffic
flow swaps and green-time proportion changes for a dynamic
traffic system and investigated conditions for the existence of
equilibrium incorporating flow divergence in a network. Smith
and Mounce [17] proposed a day-to-day rerouting model
with the combination of signal control, which was shown
to converge to the set of approximate consistent equilibrium
under certain conditions.

Recently, various sensing techniques (e.g., inductive loop
detectors, video cameras and advanced on-board electronic
devices) are more widely applied in traffic networks and
provide travelers with the real-time traffic information for
their current optimal rerouting, which allows the day-to-day
model to be utilized within a day and helps to evaluate Intel-
ligent Transportation Systems (ITS) interventions in the short
term [17]. In this case, the day-to-day model has the potential
to be used under incident condition and to investigate the
user equilibrium when an incident had been identified, if fast
computation can be completed online or previously calculated
timings could be quickly downloaded [15]. More importantly,
the notion of equilibrium provides promising opportunities
for both short-term and long-term incident control in urban
traffic networks. Specifically, a new equilibrium will exist
during a long-term incident using the day-to-day model and
the throughput of a road network is maximized at an user
equilibrium [22], which improves traffic capacity under a
long-term incident condition; on the other hand, even if an
equilibrium may not exist during a short-term incident, when
traffic flow swaps tend to an equilibrium, traffic capacity in a
network will still be improved [22], [23].

Fig. 2. A two route network.

To our knowledge, there are very few works investigating
the existence condition of equilibrium and system stability
under different incident conditions considering the interactions
between route choice and traffic signal control.

III. ROUTE CHOICE METHOD WITH BOTTLENECK DELAY

The proportional switch adjustment process is viewed as
(perhaps) the most natural route swapping process. It has
simple mathematical structure and intuitive route adjustment
behavior rule; in addition, PAP explicitly addresses the orig-
inal micro-mechanism of network traffic evolution between
multiple routes connecting the same OD pair. In this section,
we firstly introduce the route choice method and then extend
the PAP model to incorporate bottleneck delays using a
M/G/1 queueing model with periodic vacations.

A. The Proportional Switch Traffic Flow Adjustment Process

Consider the simple network in Figure 2 and let
X1(t) be the flow on route 1 at time t (vehicles per second);
X2(t) be the flow on route 2 at time t (vehicles per second);
s1 be the saturation flow on link 1 (vehicles per second);
s2 be the saturation flow on link 2 (vehicles per second);
C1(X1(t)) be the travel cost via route 1 at time t (seconds);
C2(X2(t)) be the travel cost via route 2 at time t (seconds);
X(t) = [X1(t), X2(t)] be the route flow vector at time t;
C (X(t)) = [C1 (X1(t)) , C2 (X2(t))] be the route-cost vec-

tor at time t .
Consider a fixed demand T (vehicles per second) so that

X1 (t) + X2 (t) = T . More generally, the traffic flow on
routes 1 and 2 should satisfy D={(X1 (t) , X2 (t)) : X1 (t) +
X2 (t) = T, X1 (t) � 0, X2 (t) � 0}. Following Wardrop
equilibrium, we shall say that the traffic flow X (t) is in
equilibrium if and only if more costly routes are not used [15].
Mathematically, suppose that at a specific time instant t ,
C1 (X1(t)) <C2 (X2(t)), and then the traffic flow X (t) is in
equilibrium if and only if

X2(t)[C2 (X2(t)) − C1 (X1(t))] = 0. (1)

For a non-equilibrium flow X (t), it suggests that travelers
may swap from route 2 to route 1 at time t at a rate
X2 (t) [C2 (X2(t)) − C1 (X1(t))] [15], which is an increasing
function of both

• the flow X2(t) on the more expensive route 2 at time t;
and

• the difference C2 (X2(t)) − C1 (X1(t)) in route costs at
time t .
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Fig. 3. A multiple-route signalized road network.

Hence with a suitable step length w > 0 [24], the changes
Δ1 (X(t)), Δ2 (X(t)) in the traveler flows on routes 1 and 2
will be given by the following equations, respectively:

Δ1 (X(t)) = wX2(t) [C2 (X2(t)) − C1 (X1(t))] ; (2)

Δ2 (X(t)) = −wX2(t) [C2 (X2(t)) − C1 (X1(t))] . (3)

Letting [C2(X2(t)) − C1(X1(t))]+ = max{C2(X2(t))
−C1(X1(t)), 0}, for the more general situation that C2 (X2(t))
is not necessarily greater than C1 (X1(t)), the notations in (2)
and (3) become:

Δ1 (X(t)) = −wX1(t) [C1 (X1(t)) − C2 (X2(t))]+
+wX2(t) [C2 (X2(t)) − C1 (X1(t))]+ ; (4)

Δ2 (X(t)) = −wX2(t) [C2 (X2(t)) − C1 (X1(t))]+
+wX1(t) [C1 (X1(t)) − C2 (X2(t))]+ . (5)

Let Δ12 = [−1, 1] and Δ21 = [1,−1], where Δ12 is a
vector indicating a swap from route 1 to route 2 vector and
Δ21 is a vector indicating a swap from route 2 to route 1 vector.
Then, � (X(t)) = [Δ1 (X(t)) ,Δ2 (X(t))] can be represented
as

� (X(t)) = wX1 (t) [C1 (X1(t)) − C2 (X2(t))]+Δ12

+wX2 (t) [C2 (X2(t)) − C1 (X1(t))]+Δ21. (6)

Recall that X(t) = [X1(t), X2(t)], the dynamic system for
the road network in Figure 2 can be represented as

X(t + 1) = X(t) + � (X(t)) . (7)

B. Extending Route Choice Method to Incorporate
Bottleneck Delays With Vertical Queueing

Considering a more general signalized road network in
Figure 3, there is a traffic signal at node 1. Let Gi be
the green-time proportion at the exit of link i and for all
the Ω routes, the green-time proportion should be in set
of F =

{
G : ∑Ω

i=1 Gi = 1, Gi � 0
}

and extending the
demand set D to a more general network with Ω routes,
D =

{
X : ∑Ω

i=1 Xi = T, Xi � 0
}

. Moreover, considering
the capacity of each route, there should be a supply-feasible
set S = {(X1, X2, . . . , XΩ, G1, G2, . . . , GΩ) : X1 ≤ s1G1,
X2 ≤ s2G2, . . . , XΩ ≤ sΩ GΩ } [15]. Therefore, the traffic
flow and green-time proportion should belong to the set
D × F ∩ S [15].

Fig. 4. Representation of a server and queue at an intersection.

Bottleneck delays at the exit of each link will affect the
traffic flows and traffic costs on all routes, which must be
accounted for in the cost vector C already discussed above,
and the total cost (running cost plus cost due to bottleneck
delay) will then be felt by the route flow vector X (t). Also,
the bottleneck delays will be affected by route flows. Thus,
considering the bottleneck delays of all routes explicitly,
we need to model this dynamical system in a way similar to
the PAP dynamical system above. In this subsection, we utilize
queueing theory to analyze the bottleneck delays with vertical
queueing considering the random arrival of vehicles at a link.
For a link with traffic signal, the vehicle queues can be
modeled as a M/G/1 queue with periodic vacations [25].
At the green period of a traffic signal, vehicles leave the
intersection gradually, which can be considered as vehicles
receiving services at the exit of a link.

Definition 1 (Vertical Queueing): The vertical queue
assumption presumes that vehicles on a roadway do not
back up along the roadway, which would be considered a
horizontal queue, but rather stack up upon one another at
the point where congestion begins or at the stop line of a
traffic signal. The vertical queueing assumption enables many
calculations to be simplified and allows researchers to get to
the core of their problem, while ignoring the effects of queue
buildup on a roadway.

As shown in Figure 4, for link a, assume the service time
of the k − th vehicle is Sk . When the i − th vehicle reaches
the exit of a link, if there is a vehicle already in service, the
waiting time of the i − th vehicle can be represented as

Wi = Ri +
i−1∑

k=i−Ni

Sk, (8)

where Ri is the residual service time of the current vehicle
being serviced (unfinished work expressed as the time needed
to discharge the work). Otherwise, if when the i − th vehicle
reaches the exit of a link, the server is idle (i.e., the system
is empty), then Ri = 0. Parameter Ni is the (random) number
of vehicles in the queue.

Therefore, the mean waiting time of a vehicle is

E {W } = E {Ri } + E

⎧⎨
⎩

i−1∑
k=i−Ni

Sk

⎫⎬
⎭ . (9)

The service time of each vehicle can be seen approximately
as a constant 1

sa
, where sa is the saturation flow at the exit of

link a. So (9) can be presented as

E {W } = E {Ri } + 1

sa
· E {Ni } . (10)
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As shown in (6) and (7), the traffic flow swaps propor-
tionally between multiple routes at each time interval and the
traffic flow during a time interval can be considered to be
static. Thus by Little’s law, the mean queue length E {Ni } can
be expressed in terms of the waiting time [26], [27]:

E {Ni } = xa E {W } , (11)

where xa is the traffic flow rate of a link.
Substituting (11) into (10), the mean waiting time W can

be presented as

E {W } = E {R}
1 − ρ

, (12)

where ρ = xa
sa

.
Let M (t) be the number of arrivals in the interval (0, t),

L (t) be the number of vacation intervals in the interval (0, t),
Si be the service time of the i − th vehicle, and Vi be the
i − th vacation time. So the time average of r (t) over(0, t)
can be presented as

1

t

∫ t

0
r (τ ) dτ = 1

t

M(t)∑
i=1

1

2
S2

i + 1

t

L(t)∑
i=1

1

2
V 2

i

= 1

2

M (t)

t

∑M(t)
i=1 S2

i

M (t)
+ 1

2

L (t)

t

∑L(t)
i=1 V 2

i

L (t)
,

(13)

where M(t)
t is the average vehicle arrival rate in the inter-

val (0, t), L(t)
t is the vacation (red signal) arrival rate in the

interval (0, t),
∑M(t)

i=1 S2
i

M(t) is the second moment of Si in the

interval (0, t), and
∑L(t)

i=1 V 2
i

L(t) is the second moment of Vi in
the interval (0, t). As t → ∞, the average residual service
time E {R} is

E {R} = lim
t→∞

1

t

∫ t

0
r (τ ) dτ = 1

2
xa S2 + 1

2
θaV 2, (14)

where θa is the the vacation (red signal) arrival rate at link a.
Letting Tcl be the cycle length for a complete traffic signal
cycle, then θa equals 1

Tcl
. Moreover, as mentioned before,

the service time of each vehicle at the exit of link a is a
constant 1

sa
, which is determined by the link saturation flow.

Also, the vacation time of traffic signal on link a is (1−Ga)Tcl ,
which is determined by the cycle length for a complete traffic
signal cycle Tcl and the green time proportion Ga on link a.
Hence the mean residual service time E {R} in (14) can be
written as

E {R} = xa

2s2
a

+ (1 − Ga)
2 Tcl

2
. (15)

Substituting (15) into (12), the mean waiting time W is

E {W } = E {R}
1 − ρ

= xa

2sa (sa − xa)
+ sa (1 − Ga)

2 Tcl

2 (sa − xa)
. (16)

And the mean sojourn time ba (bottleneck delays) of a
vehicle at link a can be presented as

ba = E {W } + 1

sa
= 2sa + s2

a (1 − Ga)2 Tcl − xa

2sa (sa − xa)
. (17)

Equation (17) involves link flows, which are connected to
route flows via the route-link incidence matrix A. This matrix
is defined as follows:

Aa =
{

1, i f link a is part o f the route

0, otherwi se
. (18)

Then, xa = (AX)a, (17) becomes:

ba = 2sa + s2
a (1 − Ga)2 Tcl − (AX)a

2sa
(
sa − (AX)a

) . (19)

Let b be the vector of bottleneck delays of links, which can
be written as

b = [
b1, b2, · · · , bNl

]
, (20)

where Nl is the number of links in the road network. Then,(
ATb

)
i can be seen as the total bottleneck delay of the i − th

route.
Thus by extending the proportional switch rerouting

dynamic system in (7) with two routes to incorporate bot-
tleneck delays with vertical queueing in (19, 20), the change
� (X(t)) in (6) can be written as

� (X(t)) = wX1[C1 (X1(t)) +
(

ATb
)

1

−C2 (X2(t)) −
(

ATb
)

2
]+Δ12

+wX2[C2 (X2(t)) +
(

ATb
)

2

−C1 (X1(t)) −
(

ATb
)

1
]+Δ21. (21)

As shown in Figure 3, (21) can be extended to a more
general network with multiple routes between a single OD
pair. Denote by r ∼ h if routes r and h join the same OD
pair, and then the traffic flow swap between routes r and h is:

� (X(t)) =
∑

{(r,h):r<h}
w{Xr [Cr (Xr (t)) +

(
ATb

)
r

−Ch (Xh(t)) −
(

ATb
)

h
]+Δrh

+Xh[Ch (Xh(t)) +
(

ATb
)

h

−Cr (Xr (t)) −
(

ATb
)

r
]+Δhr }. (22)

According to [15], (22) may then be readily extended to the
case where there are several routes joining several OD pairs,
by putting, for OD pair q:

�ODq (X(t)) =
∑

{(r,h):r<h}
w{Xqr [Cqr

(
Xqr (t)

) +
(

ATb
)

qr

−Cqh
(
Xqh(t)

) −
(

ATb
)

qh
]+Δqrh

+Xqh[Cqh
(
Xqh(t)

) +
(

ATb
)

qh

−Cqr
(
Xqr (t)

) −
(

ATb
)

qr
]+Δqhr }. (23)

For all the K OD pairs, the traffic flow swap is � (X) =
[�OD1 (X) ,�OD2 (X) , . . . ,�ODK (X)].

The extended proportional switch rerouting dynamic system
also can be written as:

X(t + 1) = X(t) + � (X(t)) . (24)
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The stability of system with proportional switch rerouting
method has been studied in [15], which refers to asymptotic
stability [28], [29]. Specifically, under suitable condition (route
cost C is monotone and smooth, and is an increasing function
of route flow X , which is proved in Section IV), the system
asymptotically converges to an equilibrium. However, in [15],
bottleneck delays have not been considered in route cost C .
In this article, as shown in (19), the bottleneck delay is also an
increasing function of route flow X in the set of D × F ∩ S.
Hence the dynamic system in (24) with bottleneck delays can
also converge to an equilibrium.

IV. INCIDENT EFFECT ON ROUTE TRAFFIC FLOW

With the development of advanced sensing techniques,
traffic information such as link flows, travel speed and
even incidents can be monitored timely. Using the real-time
information, many studies have been proposed to investigate
incident duration estimation [10], [11] considering multiple
influential factors of traffic incidents, such as incident type,
number of lanes and traffic volume by using machine learning
and artificial intelligence. In this case, when an incident had
been identified, the real-time traffic costs for routes between
the same OD pair can be estimated and informed neighboring
vehicles to provide real-time road conditions for their future
route planning. Note that the driver compliance has been
considered in PAP route choice model. Specifically, when
an incident occurred, a number of drivers at routes with
the incident tend to reroute and choose the path with lower
travel cost, which is consistent with the individual travel
behavior pursuing the least cost. Even if other drivers choose to
remain on the routes with incidents, according to the Wardrop
equilibrium [16], all the routes between the same OD pair tend
to have the same travel costs gradually and the real-time traffic
information provided by advanced sensing techniques can
efficiently promote the convergence of road network system
in a short term. In this section, we first analyze the traffic
flow swaps in an urban road network interrupted by incidents
using queueing theory. Then, considering the average travel
delays with incidents on road links, we extend the dynamic
system in (24). Finally, we give the existence condition for
a new Wardrop equilibrium after an incident and prove the
stability of the dynamic system.

A. Extending the Route Choice Method to Incorporate Link
Costs With Incident Effects

When using queueing theory to analyze the travel cost of a
link with incident, the space occupied by a vehicle on a link
can be seen as a “server”, which starts service as soon as a
vehicle enters the link and conducts the “service” until the
end of the link is reached [26], [27] and the service rate is
related to the average travel speed and the length of the link.
Hence, for each link, the number of servers, m, is limited,
which is determined by the multiplication of jam density,
length of the road link, and the number of lanes. Moreover,
assuming that the vehicle arrival process can be modeled by
a Poisson process with an arrival rate xa and the service
time is exponentially distributed [30] with service rate μ.

Fig. 5. State transition diagram under normal and incident conditions.

Vehicle arrival process on a link without incident can be
modeled by a M/M/m queueing system. However, as soon
as an incident occurs, both the number of working servers
and service rates of all servers decrease until the incident is
cleared. During the incident, the number of servers decreases
from m to m′ and the service rates of all servers drop from
μ to μ′ � 0. Hence the queueing process under normal and
incident conditions can be modeled as two M/M/m queueing
system with different service rate and number of servers,
as shown in Figure 5. Note that the number of servers m′
and service rate μ′ under incident condition can be estimated
with consideration of multiple incident influential factors (e.g.,
traffic flow, incident type, number of lanes, vehicle lane-
changing and weaving maneuvers) by artificial intelligence
[10], [11] to calculate link travel costs under different incident
conditions.

Let the steady-state probability of the state that i vehicles
are on the link under normal condition be Pi and the steady-
state equilibrium equations can be written as:{

xa Pi−1 = iμPi , i ≤ m

xa Pi−1 = mμPi , i > m.
(25)

Then, we can get the expressions of all steady-state
probability Pi

Pi =

⎧⎪⎨
⎪⎩

P0
(mη)i

i ! , i ≤ m

P0
mmηi

m! , i > m,

(26)

where η = xa
mμ < 1. Using the fact

∑∞
i=0 Pi = 1, we have

P0 =
[

1 +
m−1∑
i=1

(mη)i

i ! +
∞∑

i=m

(mη)i

m!
1

mi−m

]−1

. (27)

Hence the number of vehicles awaiting services can be
written as

NQ =
∞∑

i=0

i Pi+m = P0 (mη)m

m!
∞∑

i=0

iηi = P0 (mη)m

m!
η

(1 − η)2 .

(28)

Using the Little’s law, the expected running time of a link
under normal condition can be represented as

cN = 1

μ
+ NQ

xa
= 1

μ
+ 1

xa
· P0 (mη)m

m!
η

(1 − η)2 . (29)
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Similarly, the expected running time of a link under incident
condition is

cI = 1

μ′ + NQ

xa
= 1

μ′ + 1

xa
·
(
m′η′)m′

m′!
η′

(1 − η′)2

·
⎡
⎣1 +

m′−1∑
i=1

(
m′η′)i

i ! +
∞∑

i=m′

(
m′η′)i

m′!
1

m′i−m′

⎤
⎦−1

, (30)

where η′ = xa
m′μ′ < 1. In summary, the average running time

on link a under normal and incident condition can be written
as:

ca=
⎧⎨
⎩

1

μ
+1

xa
·P0 (mη)m

m!
η

(1−η)2 , under normal condi tion

(30), under incident condi tion.

(31)

Based on the route-link incidence matrix A in (18) and
traffic flow on link a, xa = (AX)a , (31) can be rewritten
into (32), shown at the bottom the page.

Let the vector of average travel time of links be c =
[c1, c2, · · · , cL ] and let

(
ATc

)
i be the travel time of the i − th

route. Then, the traffic flow swap at each OD pair in (23)
considering incident effects can be written as:
�ODq(X(t)) =

∑
{(r,h):r<h}

w{Xqr [
(

AT(c + b)
)

qr

−
(

AT(c + b)
)

qh
]+Δqrh+Xqh[

(
AT(c + b)

)
qh

−
(

AT(c + b)
)

qr
]+Δqhr }. (33)

The dynamic system considering incident effects is the same
as that in (24).

B. Equilibrium Existence and System Stability Under
Incident Effects

After an incident occurring on a link, the travel cost of this
link increases from cN (x (t)) to cI (x (t)) with the subscripts
N and I denoting normal and incident conditions respectively.
Let the total costs of the i − th routes under normal condition
at time t be CNi (Xi (t)) = (

AT (cN + b)
)

i and let the total
costs of the i − th routes under incident condition at time t be
CI i (Xi (t)) = (

AT (cI + b)
)

i . Then, for all k routes including
the incident link, the travel costs will be increased from
CN = {CN1 (X1 (t)) , CN2 (X2 (t)) , . . . , CNk (Xk (t))} to
CI = {CI 1 (X1 (t)) , CI 2 (X2 (t)) , . . . , CI k (Xk (t))}, respec-
tively. Thus for route i including the incident link, assuming

that an incident occurs at time t∗, and letting CI i (Xδ) =
CNi (Xi (t∗)), then we can obtain the extra route flow ΔXi =
Xi (t∗)− Xδ, which leads to a non-equilibrium in the dynamic
system due to incident effects. However, for the route j
without including the incident link, the extra route flows
ΔX j = 0. In this way, for all 
 routes in the road network,
the extra route flow vector is ΔXR = {ΔX1,ΔX2, . . . ,ΔX
}.
The total extra route flow is

ΔXT =

∑

i=1

ΔXi . (34)

Hence if the dynamic system achieves equilibrium again,
the total extra route flow ΔXT should be allocated to all
routes between the same OD pair according to their travel cost
expressions. Using this system of equations in (35), we can
obtain the extra flows on all routes that cause the dynamic
system returning to a new equilibrium after incident effects:⎧⎪⎨

⎪⎩
ΔX I 1 + ΔX I 2 + . . . + ΔX I
 = ΔXT(
AT (c + b)

)
1 (ΔX I 1) = (

AT (c + b)
)

2 (ΔX I 2)

= . . . = (
AT (c + b)

)



(ΔX I
)

(35)

where 
 is the number of routes between an OD pair. In this
way, letting the vector of extra route flows ΔXI after an
incident be {ΔX I 1,ΔX I 2, . . . ,ΔX I
}, the dynamic system
can reach a new equilibrium X∗

1 = X (t∗) − ΔXR + ΔXI if
and only if this equilibrium still belongs to the set D × F ∩ S.
In the rest of this subsection, we will give the equilibrium
existence and system stability conditions and prove them
respectively.

1) Equilibrium Existence: We first give the existence con-
dition of equilibrium in the set D × F ∩ S, if D × F ∩ S is
non-empty.

Theorem 2: For the dynamic system formulated in (24),
a road network stays in an equilibrium state before the
occurrence of an incident. Assuming that an incident occurs
at time t∗, let the vector of route flow when an incident
occurs be X (t∗), and then if the route flow vector meets
the condition that for each X0 ∈ D × F ∩ S\B (B is the
boundary of the non-empty set D × F ∩ S), there is a positive
real number k < 1, when X ∈D × F ∩ S\(D × F ∩ kS), such
that −CE (X) · (X0 − X) > 0, then there is a new Wardrop
equilibrium X (t∗) − ΔXR + ΔXI ∈ D × F ∩ S.

Proof: This proof is given in Appendix A.
2) System Stability: In order to prove the stability of the

proposed dynamic system, we first state the definition of
system stability and the Lyapunov stability theorem [31].

ca =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

μ
+

(
(AX)a

μ

)m · (AX)a
mμ

(AX)a · m! ·
(

1 − (AX)a
mμ

)2 ·
⎡
⎢⎣1 +

∑m−1

i=1

(
(AX)a

μ

)i

i ! +
∑∞

i=m

(
(AX)a

μ

)i

m! · mi−m

⎤
⎥⎦

−1

, under normal condi tion

1

μ′ +
(

(AX)a
μ′

)m′
· (AX)a

m′μ′

(AX)a · m′! ·
(

1− (AX)a
m′μ′

)2 ·
⎡
⎢⎣1 +

∑m′−1

i=1

(
(AX)a

μ′
)i

i ! +
∑∞

i=m′

(
(AX)a

μ′
)i

m′! · m′i−m′

⎤
⎥⎦

−1

, under incident condi tion

(32)
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Definition 3: The dynamic system is stable if and only if,
starting from any point X0 ∈ D × F ∩ S, the system in (24)
converges to an equilibrium as t → +∞.

Theorem 4 (Lyapunov Stability Theorem): Let � (X(t)) be
continuously differentiable. Then, the dynamic system in (24)
is stable if there is a continuously differentiable scalar function
V (· ), defined throughout the set D × F ∩ S, such that

• V (X) � 0 for all X ∈ D × F ∩ S;
• V (X) = 0 if and only if X is an equilibrium; and
• grad V(X) · � (X(t)) < 0 if X is not an equilibrium.

According to Definition 3 and Theorem 4, we first present a
candidate Lyapunov function V based on the dynamic system
in (24) under incident condition, which can be written as

Vq (X(t)) =
∑

{(r,h):r<h}
w{Xqr {[

(
AT(c + b)

)
qr

−
(

AT(c + b)
)

qh
]+Δqrh}2+Xqh{[

(
AT(c + b)

)
qh

−
(

AT(c + b)
)

qr
]+Δqhr }2}. (36)

V (X(t)) =
∑

q

Vq (X(t)) . (37)

Theorem 5: After an incident, if the new Wardrop equilib-
rium X (t∗) − ΔXR + ΔXI ∈ D × F ∩ S, then for any starting
point X0 ∈ D × F ∩ S, the dynamic system in (24) is stable.

Proof: For all X ∈ D × F ∩ S, it is easy to see
that V (X) � 0. If the new Wardrop equilibrium is in
the set D × F ∩ S, then there must be an equilibrium such
that V (X) = 0. Moreover, the function V also satisfies
grad V(X)·� (X(t)) < 0 if X is not an equilibrium, the proof
of which is given in Appendix B.

So V (X(t)) is a Lyapunov function for the dynamic
system (24) and if a new Wardrop equilibrium
X (t∗) − ΔXR + ΔXI ∈ D × F ∩ S, then the dynamic
system (24) under incident is stable.

V. TRAFFIC SIGNAL CONTROL POLICY

With the increasing applications of Advanced Traveler
Information Systems (ATIS) (e.g., inductive loop detectors,
video cameras, warning lights and advanced on-board elec-
tronic devices) [32], dynamic route guidance service can
provide the real-time traffic information for drivers, which
enables traffic flows to be readily monitored and analyzed.
More importantly, the real-time traffic information helps trav-
elers choose the current optimal route, which allows the day-
to-day model to be utilized within a day and helps to evaluate
ITS interventions in the short term [17]. Based on existing
studies about short-term incident control [12]–[14], [33], a
traffic signal control system for an incident intersection has
been presented in Figure 6, where many kinds of sensors are
installed at an intersection to capture and provide real-time
traffic information for travelers. For instance, inductive loop
detectors are applied to collect traffic volume and average
travel speed and cameras are adopted to detect the type and
severity of an incident. These traffic data can be transmitted
to an Information Processing Center (IPC) to estimate traffic
costs on the incident link and then provide travelers with

Fig. 6. Traffic signal control system at an intersection.

rerouting guidance for their future routes via the roadside
warning lights. Moreover, combining the proportional vehicle
rerouting method, in this section, we propose a novel traffic
control policy to adjust the green-time proportion for traffic
signal at downstream of the incident area,1 as illustrated
in Figure 6, which implements different control strategies
according to the severity of an incident and achieves a more
rapid recovery rate and an increased stability of the road
system under incident conditions.

Specifically, considering the road network in Figure 3,
there is a traffic signal at node 1. For convenience, we still
utilize a two-route network with signals to illustrate our
proposed signal control policy, but for further system model
and equilibrium analysis, we use a more general network with
multiple routes in Figure 3. According to the rerouting method,
the road network can achieve an equilibrium X∗ before the
occurrence of an incident. However, if an incident occurs
on route 2 suddenly, the total travel cost of route 2 will
be increased such that CE1 (X∗) < CE2 (X∗) at the former
equilibrium X∗ and the dynamic system cannot maintain the
stability at this route flow vector X∗ any more. Thus in order
to achieve a new equilibrium and recover road network from
an incident, according to the proportional switch rerouting
method, traffic flow will be swapped from route 2 to route 1
gradually and if there is an new equilibrium X∗

1 in the
feasible region D × F ∩ S such that CE1

(
X∗

1

) = CE2
(
X∗

1

)
, the

dynamic system can reach an new equilibrium to recover from
an incident. However, if a new equilibrium X∗

1 is not in the
feasible region D × F ∩ S based on the constant green-time
proportion, the system cannot reach a new equilibrium to
recover from an incident. Moreover, an increased recovery rate
should also be considered in the implementation of the traffic
control policy.

Therefore, considering traffic signal control and combining
vehicle rerouting method with a proper signal control policy
provides a promising way to achieve a better road network
control after an incident. In this way, if both route traffic flow
and the green-time proportion of traffic signal can achieve
an equilibrium

[
X∗, G∗] simultaneously, the dynamic system

1For an extended road network with many traffic signals at the intersections
among multiple OD pairs, we can adjust the green-time proportion for traffic
signal at destination of the OD pair with an incident. In this case, the proposed
signal control policy can relieve incident-induced congestion and improve
recovery rate from an incident for the OD pair.
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Fig. 7. An illustration of signal control policy under incident condition.

can be stable. After an incident, according to the equilibrium
existence condition in Theorem 2, we can calculate the new
route flow equilibrium X∗

1. Based on the instant green-time
proportion, if there is a minor incident in a road network and
the route flow equilibrium X∗

1 exists in the feasible region,
as illustrated in Figure 7(a), then we can reduce the green-
time proportion G1 on route 1 and increase the green-time
proportion G2 on route 2. Thus in combination with the
route choice method in Section III, both the travel cost and
bottleneck delay of route 2 will be reduced simultaneously
and with a suitable length step, the dynamic system can
achieve a new equilibrium

[
X∗

1, G∗
1

]
eventually, which can

lead to a quicker recovery of dynamic system to reach the
new equilibrium X∗

1 and conduce to an improvement of the
system recovery ability under incident condition. However,
if there is a serious incident and a new route flow equilibrium
X∗

1 exists outside the feasible region when an incident occurs,
as shown in Figure 7(b), the feasible region should be enlarged
appropriately to incorporate the new equilibrium

[
X∗

1, G∗
1

]
.

In this case, we can increase the green-time proportion G1 on
route 1 and reduce the green-time proportion G2 on route 2,
as shown in Figure 7(b) and with a suitable step length, the
dynamic system will reach the equilibrium

[
X∗

1, G∗
1

]
, which

provides an increasing opportunity of road system recovery
from an incident and improves the stability of traffic network
with random disturbance. In summary, the proposed signal
control policy can benefit road networks under both long-term
and short-term incident conditions, due to that 1) for the
long-term incidents, such as work zone closure, based on
the day-to-day model in Section III, traffic flows in road
networks can achieve a new equilibrium eventually using
our proposed control strategy and the traffic capacity can be
maximized during the long-term incident [22], [23]; 2) for the
short-term incidents, such as accidents, an equilibrium may not
be reached during the incident clearance, however, according
to the analysis results in [22], [23], traffic capacity will be
increased gradually when the dynamic system trends towards
an equilibrium state, which is consistent with the control policy
in this section, thus our proposed control strategies can also
achieve a better performance in road network recovery and
system stability under short-term incident conditions.

Mathematically, let G1 (t) be the green-time proportion on
route 1 on time t and G2 (t) be the green-time proportion on
route 2 on time t . If a new equilibrium X∗

1 exists in the feasible

region, with a suitable step length w′ > 0, the green-time
proportion change ΔG1 (t) and ΔG2 (t) on time t can be
written as:

ΔG1 (t) = −w′G1 (t) [CE2 (X2 (t)) − CE1 (X1 (t))]+
+w′G2 (t) [CE1 (X1 (t)) − CE2 (X2 (t))]+ ;

(38)

ΔG2 (t) = −w′G2 (t) [CE1 (X1 (t)) − CE2 (X2 (t))]+
+w′G1 (t) [CE2 (X2 (t)) − CE1 (X1 (t))]+ .

(39)

Let Δrh =
⎡
⎣0, . . . , 0, −1︸︷︷︸

r−th

, 0, . . . , 0, 1︸︷︷︸
h−th

, 0, . . .

⎤
⎦, Δhr =

⎡
⎣0, . . . , 0, 1︸︷︷︸

r−th

, 0, . . . , 0, −1︸︷︷︸
h−th

, 0, . . .

⎤
⎦ and ΔGODq (t) =

[ΔGq1(t),ΔGq2(t), . . . ,ΔGqΩ(t)] (Ω is the number of
routes between an OD pair q). For a more general network
with several routes between multiple OD pairs, the green-time
proportion change at each OD pair is

ΔGODq (t) =
∑

{(r,h):r<h}
w′{Gqr (t) [CEqh

(
Xqh (t)

)
−CEqr

(
Xqr (t)

)]+Δqrh + Gqh (t)

× [CEqr
(
Xqr (t)

) − CEqh
(
Xqh (t)

)]+Δqhr }.
(40)

For all the K OD pairs, the green-time proportion change
is

�G (t) = [�GOD1 (t) ,�GOD2 (t) , . . . ,�GODK (t)]. (41)

Similarly, if a new equilibrium X∗
1 lies outside the feasible

region, as shown in Figure 7(b), the green-time proportion
change at each OD pair can be written as

ΔGODq (t) =
∑

{(r,h):r<h}
w′{Gqh (t) [CEqh

(
Xqh (t)

)
−CEqr

(
Xqr (t)

)]+Δqhr + Gqr (t)

× [CEqr
(
Xqr (t)

) − CEqh
(
Xqh (t)

)]+Δqrh}.
(42)

For all the K OD pairs, the green-time proportion change
can also be written as (41).

Let G (t) be the green-time proportions on all the routes
between multiple OD pairs and for both equilibrium exis-
tence circumstances above, the dynamic system governing
green-time proportion can be written as

G (t + 1) = G (t) + ΔG (t). (43)

Combining the rerouting dynamic system in (24) and green-
time proportion dynamic system in (43), we have

� [X, G] = [ΔX (t) ,ΔG (t)] . (44)

The traffic dynamic system considering both rerouting and
traffic signal control can be written as

[X, G] (t + 1) = [X, G] (t) + � [X, G] (t) . (45)
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A. Equilibrium Existence

As illustrated in Figure 7, using the proposed
traffic signal control policy, we can adjust the supply-
feasible set S dynamically according to the equilibrium
existence conditions. Hence for each Gj (t) =[
G1 j (t), G2 j (t), . . . , GΩ j (t)

]
between an OD pair (Ω is the

number of routes between the OD pair) belonging to F ={
G : ∑Ω

i=1 Gi (t) = 1, Gi (t) � 0
}

, there is a supply-feasible

set Sj = {(X1, X2, . . . , XΩ, G1 j , G2 j , . . . , GΩ j
) : X1 ≤

s1G1 j , X2 ≤ s2G2 j , . . . , XΩ ≤ sΩ GΩ j } and the union of all
the supply-feasible sets forms a larger supply-feasible set ST.
Then, after an incident, if a new equilibrium exists in the
demand-feasible set D × F∩ST, the system in (45) can reach
an equilibrium eventually. In this case, considering both the
traffic signal control and the route choice, we propose a new
equilibrium existence condition as follows.

Theorem 6: For the dynamic system formulated in (45),
if the route flow X and green-time proportion G meet the
condition that if there is a Gj ⊆ F, for each X0 ∈ D × F ∩
Sj\B, there is a positive real number k < 1, when X ∈D × F∩
Sj\

(
D × F ∩ kSj

)
, such that −CE (X) · (X0 − X) > 0, then

there is a Wardrop equilibrium
[
X∗, G∗] ∈ D × F ∩ ST.

The key step of the proof of Theorem 6 is given in
Appendix A. Compared with the existence condition in
Theorem 2, when the condition in Theorem 6 is satisfied,
the dynamic system in (45) using both rerouting and traffic
signal control can enlarge the feasible region of equilibrium
from D × F ∩ Sj to D × F ∩ ST, which provides the traffic
system with a higher recovery ability from an incident and
enhances the stability of road network significantly.

B. System Stability

Based on the dynamic system specified in (45), we first
presented a function V considering both proportional switch
rerouting method and traffic signal control policy. Then, using
Definition 3 and Lyapunov stability theorem (Theorem 4),
we propose conditions of system stability under different
equilibrium existence conditions in Figure 14 and give the
corresponding proofs.

The candidate Lyapunov function for the whole system is:

V ([X (t) , G(t)]) = V (X (t)) + V (G (t)) , (46)

where

Vq (X(t)) =
∑

{(r,h):r<h}
w{Xqr {[

(
AT (c + b)

)
qr

−
(
AT (c+b)

)
qh

]+Δqrh}2+Xqh{[
(

AT (c + b)
)

qh

−
(

AT (c + b)
)

qr
]+Δqhr }2}. (47)

V (X(t)) =
∑

q

Vq (X(t)) . (48)

For the circumstance that a new equilibrium exists in
the feasible region, according to (40), V (G (t)) can be

written as

Vq (G (t)) =
∑

{(r,h):r<h}
w′{Gqr {[CEqh

(
X Eqh(t)

)
−CEqr

(
Xqr (t)

)]+Δqrh}2+Gqh{[CEqr
(
Xqr (t)

)
−CEqh

(
Xqh(t)

)]+Δqhr }2}; (49)

V (G(t)) =
∑

q

Vq (G(t)) . (50)

Similarly, for the circumstance that a new equilibrium exists
outside the feasible region, according to (42), V (G (t)) is

Vq (G (t)) =
∑

{(r,h):r<h}
w′{Gqh{[CEqh

(
X Eqh(t)

)
−CEqr

(
Xqr (t)

)]+Δqhr }2+Gqr {[CEqr
(
Xqr (t)

)
−CEqh

(
Xqh(t)

)]+Δqrh}2}; (51)

V (G(t)) =
∑

q

Vq (G(t)) . (52)

Theorem 7: When an incident occurs, if an equilibrium[
X∗, G∗] exists in the feasible region, using our proposed

traffic signal control policy, the dynamic system specified
in (45) will be stable. However, for the circumstance that
an equilibrium

[
X∗, G∗] exists outside the feasible region,

the dynamic system (45) is stable if for each route i of all OD
pairs, 1) ∂CEi (Xi (t))

∂ Xi (t)
+ ∂CEi (Gi (t))

∂Gi (t)
> 0; and 2) wXi > w′Gi .

Proof: Obviously, for all X ∈ D × F ∩ ST,
V ([X (t) , G(t)]) � 0 and if and only if X is a Wardrop
equilibrium, V ([X (t) , G(t)]) = 0. Moreover, the candidate
Lyapunov function V ([X (t) , G(t)]) should also satisfy
∂V ([X(t),G(t)])

∂X(t) · ΔX (t) + ∂V ([X(t),G(t)])
∂G(t) · ΔG (t) < 0, if

[X (t) , G(t)] is not an equilibrium. This proof is given in
Appendix C.

Under the circumstance that an equilibrium
[
X∗, G∗] exists

outside the feasible region, according to the two conditions
in Theorem 7, only when the total travel cost change caused
by vehicle rerouting is larger than that caused by the green-
time proportion change, the dynamic system (45) will be
stable. This result is exactly consistent with Figure 7(b).
In Figure 7(b), CE1 (X1) < CE2 (X2) after an incident. Then,
according to our proposed signal control policy, the green-time
proportion of route 1 will increase and that of route 2 will
decrease, which leads to an increase in the total travel cost
on route 2. If the system can reach an equilibrium, the
traffic flow on route 2 should swap to route 1 gradually such
that CE1 (X1) = CE2 (X2) eventually. In this way, the total
travel cost change caused by the green-time proportion change
should be less than that caused by vehicle rerouting. Thus the
result suggests the effectiveness of our proposed control policy
to improve the stability of road network after the occurrence
of an incident.

VI. NUMERICAL RESULTS

The proposed dynamic system (45) is tested on an one-OD
three-route road network, as illustrated in Figure 8. We can
see that there are 3 routes from intersection 0 to 5, route 1
(intersection 0 → 1 → 2 → 5), route 2 (intersection
0 → 3 → 2 → 5) and route 3 (intersection 0 → 3 → 4 → 5).
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Fig. 8. The one-OD three-route road network.

Fig. 9. Temporal evolution of traffic flows under different incident conditions.

When an incident had been identified on the link between
intersection 2 and 5, the travel costs of route 1 and route 2 will
increase and the traffic flows on these routes will also swap
to route 3 gradually. In this case, we will adjust green-time
proportions for the traffic signal at intersection 5 based on the
proposed control policy to study the conditions for equilib-
rium existence and system stability under different incident
scenarios.

For the one-OD three-route road network, we set the lengths
of the three routes as 1 km, 1 km and 0.9 km and the saturation
flows as 75 vehicles/h, 75 vehicles/h and 100 vehicles/h
respectively. The free speed of all routes, the total demand
and the duration of traffic light cycle are set to be 50 km/h,
100 vehicles/h and 120 seconds, respectively. The start point
of traffic flows is set as X0 = [20, 30, 50] and the start
point for green-time proportions at intersection 5 is set as
G0 = [0.3, 0.7]. The step length is set according to the rules
proposed in [24].

First, when there are no incidents in the road network,
traffic flows will switch from the route with a higher cost to a
lower cost route. In this case, the road network can achieve an
equilibrium, where travel costs of all the three routes are equal,
only based on the route choice behavior of drivers. As shown
in Figure 9, the dynamical system is stable and reaches an
equilibrium point after approximately 20 iterations. Then,
an incident occurs on the link between intersection 2 and 5,
at the 26− th iteration and travel costs of route 1 (intersection
0 → 1 → 2 → 5) and route 2 (intersection 0 → 3 → 2 → 5)

Fig. 10. Temporal evolution of traffic flows and green-time proportions if
the condition for system stability is fulfilled.

will increase suddenly based on the analytical results in (32).
In this case, as depicted in Figure 9, based on the route choice
model in this article, traffic flows on route 1 and route 2 will
swap to route 3 gradually. The outputs of the dynamical system
under different incident conditions are given in Figure 9.
If the condition for existence of equilibrium in Theorem 5
is satisfied, as illustrated by the solid line with cross marker,
the dynamical system can achieve a new equilibrium after
approximately 40 iterations. However, if the condition in
Theorem 5 is not satisfied, for example, when there is a
serious incident such that a new equilibrium exists outside the
feasible region D × F ∩ S, as illustrated by the solid line with
circle marker, the traffic flow on route 3 reaches the boundary
of the supply-feasible set S = {(X1, X2, X3, G1, G2, G3) :
X1 ≤ s1G1, X2 ≤ s2G2, X3 ≤ s3G3} and the dynamical
system cannot approach a feasible equilibrium point [15].

Moreover, in Figure 9, we also give the temporal evolution
of traffic flows using our proposed signal control policy for
the circumstance that a new equilibrium exists in the feasible
region and compare it with the method that utilizes route
choice only. As illustrated by the dotted line, if an equilibrium
still exists in the feasible region, the dynamical system using
the route choice and signal control combined technique can
achieve a new equilibrium after about 30 iterations, which is
consistent with the condition in Theorem 7. More importantly,
the dynamical system using our proposed control policy shows
a quicker convergence speed, which suggests the superiority
of our proposed control policy in improving the recovery rate
of road networks from an incident, provided that there is a
minor incident in road networks and a new equilibrium still
exists in the feasible region.

As illustrated by the solid line with circle marker in
Figure 9, when there is a serious incident such that a new
equilibrium exists outside the feasible region, the dynami-
cal system cannot reach a new equilibrium only using the
route choice method. Under this circumstance, in this article,
we propose a novel traffic signal control policy combined
with the route choice model and give a sufficient condition
for system stability, as shown in Theorem 7. Figure 10 illus-
trates the temporal evolution of traffic flows and green-time
proportions if the condition in Theorem 7 is fulfilled. We can
see that with the help of signal control, the boundary of the
supply-feasible set increases from 70 to 86.03, which allows
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Fig. 11. Temporal evolution of traffic flows and green-time proportions if
the condition for system stability is NOT fulfilled.

Fig. 12. Signal control based on SCOOT and our proposed strategy; a new
equilibrium exists outside the feasible region.

the dynamic supply-feasible set to include a new equilibrium
after an incident. However, if the condition in Theorem 7 is not
fulfilled, as shown in Figure 11, the dynamical system cannot
reach a feasible equilibrium point, which implies that traffic
congestion will accumulate indefinitely and the traffic system
will be unstable. In summary, according to our analysis and
simulations, if a new equilibrium exists outside the feasible
region, the green-time proportion of the routes with an incident
should be increased to incorporate the new equilibrium in
the feasible region. When the condition in Theorem 7 can
be fulfilled, the road network can achieve stable after a
serious incident. Therefore, the proposed control policy can
provide an increased opportunity of road system recovery from
an incident and improve the system stability with random
disturbance.

As an effective actuated signal control strategy, Split, Cycle
and Offset Optimization Technique (SCOOT) has been applied
in many cities around world extensively and achieves reduced
vehicle delays in these cities, which repeats in real time
to make adjustments of splits, offsets, and cycle time in
small steps based on the real-time vehicle volumes from
the upstream links. In this article, we compare the proposed
control strategy with SCOOT under the circumstance that a
new equilibrium exists inside or outside the feasible region,
respectively. For the circumstance that a new equilibrium
exists outside the feasible region, as shown in Figure 12, if the
conditions for system stability in Theorem 7 can be fulfilled,
the dynamic system achieve a new equilibrium based on both
SCOOT and our proposed strategy with the same convergence

Fig. 13. Signal control based on SCOOT and our proposed strategy; a new
equilibrium exists inside the feasible region.

speed, because the green-time proportion for routes with an
incident will be decreased according to SCOOT, which is
similar to our proposed control policy, as shown in Figure 7(b).
However, for the circumstance that a new equilibrium exists in
the feasible region, although the dynamical system can achieve
a new equilibrium using SCOOT, their convergence speeds
are different, as illustrated in Figure 13. We can see that
our proposed control policy (dotted lines) allows the fastest
convergence speed and the signal control based on SCOOT
(solid lines with cross marker) has the slowest convergence
speed, which is even slower than the pretimed signal control
strategy (solid lines with circle marker), because the decrease
of green-time proportion on routes with an incident will reduce
the convergence speed of the dynamic system. While our pro-
posed control policy will increase the green-time proportion
for these routes, when there is a minor incident and a new
equilibrium exists in the feasible region, which will increase
the convergence speed and improve the recovery rate of the
road network from an incident.

VII. CONCLUSION

In this article, we proposed an incident management policy
considering the interactions between signal control and route
choice, which exhibits a more rapid recovery rate from an
incident and improves the stability of road network system
under incidents. We first introduced a route choice model,
i.e., the proportional switch rerouting method, and extended
this model to embrace incident effects. The condition for a
new Wardrop equilibrium existence after an incident was also
given. Then, a novel control policy was proposed, which can
provide a real-time effective control to regulate the traffic flow
and mitigate incident-related congestion based on different
incident effects dynamically. We further gave the condition for
Wardrop equilibrium existence considering both route choice
and signal control, which showed that our proposed policy is
superior in providing an increasing opportunity of road system
recovery from an incident compared with existing signal
control policies. A sufficient condition for the system stability
was also derived and proved by using Lyapunov stability
theorem. Finally, simulation results were conducted to verify
our theoretical findings and demonstrate the effectiveness of
the proposed incident control policy.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 26,2022 at 00:15:41 UTC from IEEE Xplore.  Restrictions apply. 



YUE et al.: TOWARDS ENHANCED RECOVERY AND SYSTEM STABILITY: ANALYTICAL SOLUTIONS FOR DYNAMIC INCIDENT EFFECTS 495

The theoretical results derived in this article indicated that
if there is a minor incident in a road network and a new
equilibrium still exists in the feasible region D × F ∩ S, the
road network can reach a new equilibrium gradually via the
route choice of drivers only. However, if there is a serious
incident and a new equilibrium exists outside the feasible
region D × F ∩ S, the system cannot achieve a new equi-
librium only based on the drivers’ route choice. Combining
the route choice with signal control, the feasible region can
be enlarged such that the system could become stable only
when the conditions in Theorem 7 can be met. The theoretical
results and the proposed control policy can be used to design
an improved signal control policy to supplement the pure
micro-model and to improve the state-of-the-art in real-time
traffic incident management in urban traffic networks. In the
future, for the possible applications in real networks, we intend
to extend the proposed signal control policy incorporating
more complex route choice model with multiple transportation
modals. Moreover, for a more complex network where there
are many intersections and traffic signals among multiple OD
pairs, it will be interesting to investigate an optimal control
policy with consideration of signal coordination at multiple
intersections to further improve the network capacity under
incident circumstances.

APPENDIX A
PROOF OF THEOREM 3

In this appendix, we prove that if the route flow X meets
the condition in (24), then there is a new Wardrop equilib-
rium X (t∗) − ΔXR + ΔXI ∈ D × F ∩ S. Let CEi (Xi (t)) =(
AT (b + c)

)
i be the total travel cost of route i . Following

Wardrop equilibrium, if there exists a new route flow equi-
librium X∗

1 = X (t∗) − ΔXR + ΔXI, then for all route flow
X ∈ D × F ∩ S,

CE
(
X∗

1
) · X ≥ CE

(
X∗

1
) · X∗

1, (53)

which is equivalent to the following two conditions:
−CE

(
X∗

1

) · (X − X∗
1

) ≤0, (54)

and

−CE
(
X∗

1
)

i s normal at X∗
1 to D × F ∩ S. (55)

Because CE (X) is monotonically increasing, for a road
network in Figure 2 with two routes between an OD pair,
the condition in Theorem 2 can be also written as Corollary 8.

Corollary 8: If there is X1 ∈ D × F ∩ S, such that
CE1 (X1) > CE2 (X1) and there is also X2 ∈ D × F ∩ S,
such that CE1 (X2) < CE2 (X2), then there exists a Wardrop
equilibrium X∗

1 ∈ D × F ∩ S.
It is worth noting that, for convenience, we utilize a network

with two routes between an OD pair as an illustration of
equilibrium existence, as shown in Figure 14. The obtained
results however can be readily extended to a general road
network with multiple routes [15]. Moreover, for further
theorems and proofs about the existence of equilibrium and
system stability, we conduct them on a more general network
with multiple routes in Figure 3.

Fig. 14. An illustration of equilibrium existence in road network with two
routes.

The illustrations of equilibrium existence and non-existence
are shown in Figure 14(a) and Figure 14(b) respectively.
In a network with two routes, the demand-feasible set is
D = {(X1, X2) : X1 + X2 = T, X1 � 0, X2 � 0} and the
supply-feasible set can be written as S = {(X1, X2, G1, G2) :
X1 ≤ s1G1, X2 ≤ s2G2}, as shown in Figure 14. Considering
Figure 14(a) and assuming that there is a new equilibrium X∗

1,
according to the Wardrop equilibrium, CE1

(
X∗

1

) = CE2
(
X∗

1

)
.

For each X0 ∈D × F ∩ S\B, as shown in Figure 14(a), there
exists a set of vectors X′ between X0 and XB2 (on the
boundary), such that −CE

(
X′) · (X0 − X′) > 0. Meanwhile,

there also exists a set of vectors X′′ between X∗ and XB1 (on
the another boundary), such that −CE

(
X′′) · (X0 − X′′) > 0.

Hence in Figure 14(a), let k = max
{

1
s1G1

(X0)1 , 1
s2G2

(
X∗

1

)
2

}
,

where (X0)1 is the traffic flow on route 1 of vector X0 and(
X∗

1

)
2 is the traffic flow on route 2 of vector

(
X∗

1

)
, and then for

all X ∈D × F ∩ S\(D × F ∩ kS), −CE (X) · (X0 − X) > 0.
However, if there does not exist a new equilibrium

X∗
1 ∈ D × F ∩ S after an incident, as shown in Figure 14(b),

according to Corollary 8, for all X ∈ D × F ∩ S,
CE1 (X) > CE2 (X) or CE1 (X) < CE2 (X). Then, for
each X0 ∈D × F ∩ S\B, there only exists a set of vectors X
between X0 and one of boundary vector XB1 or XB2, such
that −CE (X) · (X0 − X) > 0. In this case, we cannot find
any 0 < k < 1 that for all X ∈D × F ∩ S\(D × F ∩ kS), such
that −CE (X) · (X0 − X) > 0.

In summary, if the traffic flow meets the condition that
for each X0 ∈ D × F ∩ S\B (B is the boundary of the
non-empty set D × F ∩ S), there is a positive real num-
ber k < 1, when X ∈D × F ∩ S\(D × F ∩ kS), such that
−CE (X) · (X0 − X) > 0, then there is a Wardrop equilibrium
X∗

1 ∈ D × F ∩ S.
Theorem 2 is proved.

APPENDIX B
PROOF OF THEOREM 6

In this appendix, we shall prove that grad V(X)·� (X(t)) <
0 for all non-equilibrium X in D × F ∩ S. Let CEi (Xi (t)) =
Ci (Xi (t)) + (

ATb
)

i be the total travel cost of route i .
Thus grad V(X) · � (X(t)) can be written as (56),

shown at the bottom of the next page, where 1qi =
[0, . . . , 0, 1︸︷︷︸

i−th

, 0, . . . , 0].

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on December 26,2022 at 00:15:41 UTC from IEEE Xplore.  Restrictions apply. 



496 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 1, JANUARY 2022

It can be readily shown that the matrix Jqrh is a semi-
negative definite matrix, each �T

ODq (X(t)) Jqrh�ODq (X(t)) is
less than or equal to 0. As for each

∑
r,h,u{[CEqr − CEqh ]2+ ·

{Xqu[CEqu − CEqr ]+ − Xqr [CEqr − CEqu ]+}}, if and only
if CEqu > CEqr > CEqh , then there is a positive term∑

r,h,u[CEqr − CEqh ]2+ · Xqu[CEqu − CEqr ]+. However, for
each positive [CEqr − CEqh ]2+ · Xqu[CEqu − CEqr ]+, there
always exists one and only one negative term [CEqu −CEqh ]2+·
{−Xqu[CEqu − CEqr ]+}, such that[

CEqr
(
Xqr (t)

)−CEqh
(
Xqh(t)

)]2
+ · Xqu[CEqu

(
Xqu(t)

)
−CEqr

(
Xqr (t)

)]+ + [
CEqu

(
Xqu(t)

) − CEqh
(
Xqh(t)

)]2
+

·{−Xqu
[
CEqu

(
Xqu(t)

) − CEqr
(
Xqr (t)

)]
+} < 0. (57)

Hence if X is not an equilibrium, grad V(X) ·� (X(t)) < 0 is
proved. In this case, according to Theorem 4, if the total travel
cost CE (·) is continuously differentiable and is an increasing
function, for any starting point X0 ∈ D × F ∩ S, the dynamic
system in (24) is stable.

Theorem 5 is proved.

APPENDIX C
PROOF OF THEOREM 8

In this appendix, we shall prove that ∂V ([X(t),G(t)])
∂X(t) ·

ΔX (t) + ∂V ([X(t),G(t)])
∂G(t) · ΔG (t) < 0, for all non-equilibrium

[X (t) , G(t)] in D×F ∩ (∪ Si). Under the circumstance that a
new equilibrium is in the feasible region, ∂V ([X(t),G(t)])

∂X(t) ·ΔX (t)
can be expressed as (58), shown at the bottom of the page,
where JqXrh is equal to Jqrh in Appendix B.

As proved in Appendix B, for all non-equilibrium
vector [X(t), G(t)], each �T

ODq(X(t)) · JqXrh · �ODq(X(t))
and

∑
r,h,u{[CEqr (Xqr (t)) − CEqh(Xqh(t))]2+ · {Xqu

[CEqu(Xqu(t)) − CEqr (Xqr (t))]+ − Xqr [CEqr (Xqr (t)) −
CEqu(Xqu(t))]+}} are less than 0. As for the term
�T

ODq(G(t)) · JqXrh · �ODq(X(t)), as indicated in
subsection IV-B, after an incident occurring on a link,

the travel cost of the routes incorporating the incident link
increases suddenly. Then the traffic flow on incident routes
will swap to the other normal routes gradually. Letting k1
be the number of routes with incident effect and k2 be the
number of normal routes. �T

ODq(G(t)) · JqXrh · �ODq(X(t))
can be expressed as (59), shown at the bottom of the page.

If v = u,

�T
ODq (G)· JqXrh ·�ODq (X) =

k1∑
i=1

{
k2∑

u=1

w′w · Gqu[CEqi

−CEqu ]+·Xqi
[
CEqi−CEqu

]
+

·
(

−2
∂CEqu

∂ Xqu
−2

∂CEqi

∂ Xqi

)
},

(60)

which is less than 0.
If v �= u,

�T
ODq (G)· JqXrh ·�ODq (X) =

k1∑
i=1

{
k2∑

u=1

w′w · Gqu[CEqi

−CEqu ]+·Xqi
[
CEqi−CEqu

]
+

·
(

−2
∂CEqi

∂ Xqi

)
, (61)

which is also less than 0. Hence �T
ODq (G(t)) · JqXrh ·

�ODq (X(t)) < 0 and ∂V ([X(t),G(t)])
∂X(t) · ΔX (t) < 0.

Then, if ∂V ([X(t),G(t)])
∂G(t) ·ΔG (t) is also less than 0, according

to Theorem 4, under the circumstance that the new equilibrium
is in the feasible region, the system is stable. ∂V ([X(t),G(t)])

∂G(t) ·
ΔG (t) can be written as
∂V([X, G])

∂G
·ΔG =

∑
q

{2�T
ODq (X)· JqGrh·ΔODq (G)

+w
′2 ∑

r,h,u

{[CEqh − CEqr
]2
+ · {Gqr [CEqu

−CEqr ]+ − Gqu
[
CEqr − CEqu

]
+}}

+2�T
ODq (G)·(−JqGrh

)·ΔODq (G)}. (62)

grad V(X) · � (X(t)) =
∑

q

2�T
ODq (X(t)) Jqrh�ODq (X(t)) + w2

∑
r,h,u

{[CEqr
(
Xqr (t)

) − CEqh
(
Xqh(t)

)]2
+

·{Xqu
[
CEqu

(
Xqu(t)

) − CEqr
(
Xqr (t)

)]
+ − Xqr

[
CEqr

(
Xqr (t)

) − CEqu
(
Xqu(t)

)]
+}},

(56)
∂V ([X (t) , G(t)])

∂X (t)
· ΔX (t) =

∑
q

{2�T
ODq (X(t)) · JqXrh · �ODq (X(t)) + w2

∑
r,h,u

{[CEqr
(
Xqr (t)

) − CEqh
(
Xqh(t)

)]2
+

·{Xqu
[
CEqu

(
Xqu(t)

) − CEqr
(
Xqr (t)

)]
+ − Xqr

[
CEqr

(
Xqr (t)

) − CEqu
(
Xqu(t)

)]
+}}

+2�T
ODq (G(t)) · (−JqXrh

) · �ODq (X(t))}. (58)

�T
ODq (G(t)) · JqXrh · �ODq (X(t)) =

k1∑
i=1

{
k2∑

u=1

w′{Gqu
[
CEqi

(
Xqi (t)

) − CEqu
(
Xqu (t)

)]
+

·[0, . . . , 0,−2
∂CEqu

(
Xqu (t)

)
∂ Xqu (t)︸ ︷︷ ︸
u−th

, 0, 2
∂CEqi

(
Xqi (t)

)
∂ Xqi (t)︸ ︷︷ ︸

i−th

, 0 . . . , 0]

·
k2∑

v=1

w{Xqi
[
CEqi

(
X Eqi (t)

) − CEqv

(
Xqv (t)

)]
+ Δqiv }}. (59)
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As CEqr
(
Gqr (t)

)
is a decreasing function, the matrix JqGrh

is a semi-positive definite matrix. Following the same pro-
cedure as that in the proof of ∂V ([X(t),G(t)])

∂X(t) · ΔX (t) < 0,

it can be readily shown that ∂V ([X(t),G(t)])
∂G(t) · ΔG (t) < 0.

Conclusion readily follows that the system is stable when the
new equilibrium is in the feasible region.

However, under the circumstance that the new equilibrium
lies outside the feasible region, the green-time proportion
change can be written as (42) and (41). In this case,

∂V ([X, G])

∂X
· ΔX

=
∑

q

{2�T (X) · J · � (X) + w2
∑
r,h,u

{[CEqr

−CEqh ] · {Xqu
[
CEqu − CEqr

]
+ − Xqr [CEqr

−CEqu ]+}} + 2�T (G) · J · � (X)}, (63)

which can be shown to be less than 0 according to the proof
of (58). Moreover,

∂V ([X, G])

∂G
· ΔG

=
∑

q

{2�T (X) · J · Δ (G) + w
′2 ∑

r,h,u

{[CEqh

−CEqr ]2+ · {Gqr
[
CEqu − CEqr

]
+ − Gqu[CEqr

−CEqu]+}} + 2�T (G) · J · Δ (G)}, (64)

where w
′2 ∑

r,h,u{[CEqh − CEqr
]2
+ · {Gqr

[
CEqu − CEqr

]
+ is

proved to be less than 0, for all non-equilibrium [X (t) , G(t)],
as indicated in Appendix B. However, because the matrix
JqGrh is a semi-positive definite matrix, �T

ODq (G(t)) · JqGrh ·
ΔODq (G (t)) is greater than 0 and �T

ODq (X(t)) · JqGrh ·
�ODq (G (t)) can be also proved to be greater than 0 according
to the same procedure as that in the proof of (62). In this
case, considering both (63) and (64), if the route flow X and
green-time proportion G can meet the sufficient condition that

�T
ODq (X(t)) · JqXrh · �ODq (X(t))

+�T
ODq (G(t)) · JqXrh · �ODq (X(t))

+�T
ODq (G(t)) · JqGrh · ΔODq (G (t))

+�T
ODq (X(t)) · JqGrh · ΔODq (G (t)) < 0, (65)

then ∂V ([X(t),G(t)])
∂X(t) · ΔX (t) + ∂V ([X(t),G(t)])

∂G(t) · ΔG (t) can be
proved to be less than 0.

The sufficient condition in (65) can be presented as two
conditions that for each route i of all OD pairs, 1) ∂CEi (Xi (t))

∂ Xi (t)
+

∂CEi (Gi (t))
∂Gi (t)

> 0; and 2) wXi > w′Gi . If both conditions are

satisfied, ∂V ([X(t),G(t)])
∂X(t) · ΔX (t) + ∂V ([X(t),G(t)])

∂G(t) · ΔG (t) < 0
and the system in (43) is stable when the new equilibrium is
outside the feasible region.

Theorem 7 is proved.
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