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Abstract—We consider wireless multi-hop networks with a
finite number of (ordinary) nodes randomly deployed in a given
2D area. A finite number of gateways (infrastructure nodes)
are deterministically placed in the same area. We study the
connectivity between the ordinary nodes and the gateways. In
real applications, it is often desirable to limit the maximum
number of hops between the ordinary nodes and the gateways in
order to provide reliable services. On the other hand, requiring
every ordinary node to be connected to at least one gateway
imposes strong requirement on transmission range/power or the
number of gateways. Therefore it is beneficial to allow a small
fraction of ordinary nodes to be disconnected from the gateways
so that the network is only partially connected. Based on the
above two considerations, we provide analytical results on the k-
hop partial connectivity, which is the fraction of ordinary nodes
that are connected to at least one gateway in at most k hops.
The research provides useful guidelines on the design of wireless
multi-hop networks.

Index Terms—wireless multi-hop networks, partial connectiv-
ity, path length, shadowing

I. INTRODUCTION

Wireless multi-hop networks have been actively studied in
the recent decades to solve some real world problems. In
this paper, we consider a wireless multi-hop network with
a finite number of “ordinary” nodes (ONs) Poissonly and
i.i.d. (independently, identically distributed) in a given 2D
area. In addition, the gateways / infrastructure nodes (INs) are
deterministically placed in the same area to which the other
ONs should communicate. An ON can communicate with an
IN, i.e. they are connected, if there is at least one (single or
multi-hop) path connecting them. Examples of this type of
wireless multi-hop networks include wireless mesh networks
[1] and wireless sensor networks [2].

Extensive results have been obtained on the connectivity of
wireless multi-hop networks in recent years. However, most
results consider wireless ad hoc networks, which have been
shown to be non-scalable and unreliable [3], [4]. Further,
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previous work has mainly focused on conditions to have every
node in a network to communicate with every other node
in one or more hops. In this paper, we are interested in the
connectivity between ONs and INs in a network.

The path length between ONs and INs, a metric tightly
coupled to the end-to-end performance, is a major concern.
A large path length is undesirable because it has been shown
to have negative impact on the network performances such
as bandwidth [3], packet delay and routing [5], and energy
efficiency [6]. To avoid the existence of long paths, we limit
the maximum allowable path length between ONs and INs.
That is, an ON is said to be connected to an IN if there
is at least one path, not longer than k hops, between them.
We measure the connectivity of a network by examining
the fraction of ONs which are connected to at least one IN
in at most k hops, namely the k-hop partial connectivity.
This measurement is different from the more commonly used
measurement, i.e. the probability that all ONs are connected
to at least one IN. We allow some ONs to be disconnected
from the INs because in many practical scenarios it is either
unnecessary or impractical to require all ONs to be connected
to at least one IN [6], [7], [8]. As an example, it is acceptable
for a wireless sensor network with a large number of redundant
sensors to have a small number of sensors disconnected from
the gateways [9]. Furthermore it has been shown in [7] that
a network which allows a small fraction of nodes to be
disconnected requires much lower transmission range / power
than a network which requires all nodes to be connected.

The rest of this paper is organized as follows: Section II
reviews the related work. Section III introduces the network
model used in this paper. The analysis on the probability
distribution of the path length is given in Section IV, followed
by the analytical results on the k-hop partial connectivity. The
accuracy of our results is verified by simulation in Section V.
Finally Section VI concludes this paper.

II. RELATED WORK

The study of k-hop partial connectivity relies on the study
of probability distribution of the path length between two
nodes separated by a known Euclidean distance, which has
been studied in the literature [6], [10], [11]. In [10], Chandler
analyzed the probability that two arbitrary nodes separated by
a known distance can communicate in k or less hops where
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nodes are uniformly distributed in a 2D area. In [11], Zorzi
et al. proposed a geographic random forwarding scheme in
a 2D network where nodes are placed in the coverage area
of a transmitting node according to a Poisson process. They
obtained an upper and a lower bound on the average path
length between two nodes with a given Euclidean distance and
a given average number of neighbors. However they assumed
that every source-destination (S-D) pair is connected.

The aforementioned studies were however incomplete since
the spatial dependence problem was ignored. The spatial
dependence problem [5] arises because in a wireless multi-
hop network the event that a randomly chosen node is k hops
apart from a particular node is not independent of the event
that another randomly chosen node is i hops apart from the
same node for i ≤ k. The spatial dependence problem is
a major technical obstacle in the accurate analysis of path
length distributions. Ignoring the spatial dependence problem,
analytical results for the path length distribution is given in
[12] (resp. [13]) for UDM (resp. LSM), where UDM stands
for the unit disk model and LSM stands for the log-normal
shadowing model. Recently, the accuracy of the path length
distribution was improved in [6], for the UDM, by considering
the spatial dependence of two-hop neighbors, instead of only
one-hop neighbors considered in the literature, e.g. [12], [13].
In this paper, we extend the study in [6] to a more general
model, i.e. LSM.

Some studies on partial connectivity can be found in the
literature in the context of giant component for ad-hoc net-
works. A giant component is the largest cluster in the network
where a cluster is a maximal set of nodes where there is a
path between any two nodes in the set. Consider an ad-hoc
network with n nodes uniformly and i.i.d. in a unit square,
the one-hop connection between two nodes follows the UDM,
Ta et al. [7] proposed an empirical formula for the minimum
transmission range required for having a giant component of
size pn with 0.5 < p ≤ 1. Later this work has been extended
to consider the LSM in [8] where an upper bound for the
minimum transmission power required for the above giant
component when n → ∞ was obtained. Both work showed
that significant energy saving can be achieved if we require
only most nodes, rather than all nodes, to be inter-connected.
Note that the above results are for ad-hoc networks only.

Consider a wireless multi-hop network where ONs are
uniformly and i.i.d. in a unit square; there are 4 INs, one at
each corner of the square. Assuming the UDM, Bermudez
and Wicker [9] investigated how the fraction of ONs that
are connected to at least one IN changes as a function of
the transmission range. However, only simulation results are
obtained and the limit on the maximum path length between
ONs and INs was not considered. In a more recent work of
Ng et al. [14], they studied analytically the probability that a
network is two-hop connected, i.e. all ONs in the network are
at most two hops away from at least one IN under a generic
channel model where UDM and LSM are its special cases,
where ONs are Poissonly distributed in a unit square and 4
INs are located at the corners of the square. However, the

partial connectivity problem is not considered and the limit
on the maximum path length between ONs and INs is set to
be two (rather than a generic k considered in this paper).

III. NETWORK MODEL

We consider a wireless multi-hop network located in a
square area L × L, where nodes are i.i.d. according to a
homogeneous Poisson process with intensity ρ. Two most
widely used connection models, i.e. the unit disk model
(UDM) and the log-normal shadowing model (LSM), are used
in this paper. UDM is based on the path loss attenuation
model, which is suitable to model the radio environment in
free space without clutters [15]. Under the UDM, two nodes
are directly connected iff their Euclidean distance is not larger
than the transmission range r0. In the present of clusters,
LSM is usually used [15]. Under the LSM, the signal power
attenuation (in dB) follows a normal distribution:

10 log10
P (x)

CPtx−η
∼ Z (1)

where C is a constant, Pt is the transmission power, x is the
Euclidean distance between the receiver and the transmitter,
P (x) is the received signal power at distance x, η is the
path-loss exponent. The shadowing fades Z is a zero-mean
Gaussian distributed random variable with standard deviation
σ. When σ = 0 the LSM reduces to the UDM. As widely used
in the literature, we assume that the shadowing fades between
all pairs of nodes are i.i.d. and the link is symmetric.

Generally, a destination node is said to be k hops apart from
a source node if the shortest path between them, measured by
the number of hops, is k. However, these shortest paths are
normally difficult or very costly to be discovered by routing
algorithms in a real world. Hence many existing routing
algorithms use the idea of greedy forwarding (GF), i.e. to
forward the packets to the neighboring node that is closest to
the destination 1 [16]. Despite the requirement on the location
information, the GF algorithm has shown great potentials due
to their low control overhead and capability of adapting to
dynamic network topologies. In this paper, the number of hops
from source to destination nodes, obtained from shortest paths,
are referred to as shortest path length, whereas the number of
hops obtained from GF are referred to as feasible path length.

IV. ANALYTICAL RESULTS

We first study the probability distribution of the path length
between a S-D pair separated by a known distance. Then we
use the probability to obtain the k-hop partial connectivity.

A. Probability distribution of path length

Define φ(k|x0) to be the probability that a S-D pair is k
hops apart using GF, conditioned on x0, where hereinafter
we use “conditioned on x0” to denote “conditioned on the
Euclidean distance between the source and the destination

1It is shown in [3] that with a sensing range two times the transmission
range, the path created by a basic GF algorithm can be a good approximation
to the shortest path without the complex recovery algorithms.
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being x0” for simplicity. Two nodes are directly connected
iff the received signal power exceeds a given threshold Pmin.
Therefore from Eq. 1, we have:

Pr(P (x0) ≥ Pmin) = Pr(CPtx
−η
0 10z/10 ≥ Pmin)

= Pr(z ≥ 10 log10(
x0

r0
)η) (2)

= Pr(x0 ≤ r0 exp(
z ln 10

10η
)) (3)

where r0 =
(

CPt

Pmin

) 1
η

. Observe that Eq. 3 reduces to x0 ≤ r0
in the absence of shadowing effect, i.e. for z = 0. So, r0 is
the transmission range in the absence of shadowing effect.

According to Eq. 2 and 3, the event that two nodes are
directly connected happens iff either of the following two
conditions being satisfied: 1) Given the Euclidean distance
between two nodes being x0, they are directly connected iff
the (random) shadowing fades z ≥ 10 log10(

x0

r0
)η . 2) Given the

shadowing fades between two nodes being z, they are directly
connected iff their Euclidean distance x0 ≤ r0 exp(

z ln 10
10η ).

Based on the first condition, the probability of having a
direct connection for a pair of S-D nodes separated by x0 is:

φ(1|x0) =

∫ ∞

10 log10(
x0
r0

)η
q(z)dz. (4)

where q(z) = 1
σ
√
2π

exp(− z2

2σ2 ) is the pdf (probability density
function) of the shadowing fades.

To derive φ(k|x0) for k > 1, we analyze all possible
locations of the relay nodes between the source and destination
using the second condition, i.e. Eq. 3. Define rN (zS) to be
the transmission range of a transmitter (S) conditioned on the
shadowing fades being zS :

rN (zS) = r0 exp(
zS ln 10

10η
). (5)

Therefore any node, whose received signal power from the
transmitter (S) has shadowing fades ZS ∈ [zS , zS + dzS ],
is directly connected to S iff its Euclidean distance to the
transmitter is smaller than or equal to rN (zS).

Denote by A(x, r1, r2) the intersectional area of two circles
with distance x between centers and radii r1 and r2 respec-
tively. The size of the area can be easily calculated [6].

Define xk to be the remaining Euclidean distance be-
tween the kth hop node (Sk) and the destination (D). Then
A1 = A(xk−1, rN (z1), xk) is the intersectional area of the
circles C(Sk−1, rN (z1)) and C(D,xk). Similarly we have
A2 = A(xk−2, rN (z2), xk).

Define f(xk|x0) to be the pdf of the remaining Euclidean
distance to the destination from Sk being xk, conditioned on
x0. Because of the first type of the spatial dependence prob-
lem, f(xk|x0) depends on the remaining distances of previous
hop nodes, i.e. xk−1, xk−2, · · · , x0. An accurate calculation
of f(xk|x0) requires all previous hops to be considered,
but the calculation is complicated. Previous research, e.g.
[11], only considered the dependence on previous one hop,
which leads to a large error. Our technique can be used to

Fig. 1. Possible positions for Sk , which is the kth hop node, are located
on the arc. Consider the nodes whose received signal power from Sk−1 and
Sk−2 have shadowing fades Z1 ∈ [z1, z1 + dz1] and Z2 ∈ [z2, z2 + dz2]
respectively. The dashed-line circles represent the transmission range of Sk−1

(resp. Sk−2) conditioned on the above values of shadowing fades. A1, A2

and xk , xk−1, xk−2 are described in the following text.

compute f(xk|x0) considering the impact of the locations of
all previous hops. However as shown in Section V, considering
only previous two hops provides a fairly accurate result while
not causing a sharp increase in computational complexity.

Define g(xk|xk−1, xk−2) to be the pdf of the remaining
Euclidean distance to the destination from Sk being xk,
conditioned on D, where D is the event that the remaining
distances at Sk−1 and Sk−2 are xk−1 and xk−2 respec-
tively. Accordingly define the cdf (cumulative distribution
function) of the remaining distance at the kth hop node to be
Pr(Xk ≤ xk|xk−1, xk−2). We will derive this cdf by studying
the following two events: denote by B the event that there is
at least one node whose Euclidean distance to the destination
is smaller than xk and has a direct connection to Sk−1 and
has no direct connection to Sk−m for m ∈ [2, k]; denote by
C the event that the node Sk−1 is not directly connected to
the destination. Events B and C are independent because the
shadowing fades are i.i.d. Therefore:

Pr(Xk ≤ xk|xk−1, xk−2) = Pr(B|D)× Pr(C|D). (6)

We start with the analysis of event B. In this paragraph, we
only consider the subset of nodes whose received signal power
from Sk−1 and Sk−2 have shadowing fades Z1 ∈ [z1, z1+dz1]
and Z2 ∈ [z2, z2 + dz2] respectively. Because the shadowing
fades are i.i.d., these nodes are Poissonly distributed with
intensity ρq(z1)q(z2)dz1dz2. Denote by E the event that the
shadowing fades Z1 ∈ [z1, z1 + dz1] and Z2 ∈ [z2, z2 + dz2].
Ignore the boundary effect, then Pr(B|D, E) is equal to the
probability that there is at least one node in area A1 \ A2 as
shown in Fig. 1. The area A2 needs to be excluded because
if there is a node in this area, that node will be closer to
the destination than Sk−1, which violates the condition that
Sk−1 is the (k − 1)th hop node using GF. Since it is not
necessarily the case that A2 ⊂ A1, we approximate the size
of the overlapping area A1 \ A2 by (A1 − A2)

+, where
(A1−A2)

+ = max{0, A1−A2}. Therefore 1−Pr(B|D, E) is
equal to exp(−(A1 − A2)

+ρq(z1)q(z2)dz1dz2), which is the
probability that there is no node in area A1 \ A2. Note that
area A1 and A2 depend on z1 and z2 respectively.
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Then considering all subset of nodes, we have

Pr(B|D) = 1−
∏

z1,z2∈(−∞,+∞)

exp(−(A1 −A2)
+ρq(z1)q(z2)dz1dz2

=1−exp(−
∫ ∞

−∞

∫ ∞

−∞
(A1 −A2)

+ρq(z1)q(z2)dz1dz2).

It is evident that event C only depends on xk−1. Therefore:

Pr(C|D) = Pr (C|xk−1) = 1− φ(1|xk−1)

From the above two equations and Eq. 6, we have:

Pr(Xk ≤ xk|xk−1, xk−2) = (1− φ(1|xk−1))× (7)

(1− exp(−
∫ ∞

−∞

∫ ∞

−∞
(A1 −A2)

+ρq(z1)q(z2)dz1dz2))

By Leibniz integral rule:

g(xk|xk−1, xk−2) =
∂ Pr(Xk ≤ xk|xk−1, xk−2)

∂xk

=

∫ ∞

−∞

∫ ∞

−∞

∂(A1 −A2)
+

∂xk
ρq(z1)q(z2)dz1dz2

× exp(−
∫ ∞

−∞

∫ ∞

−∞
(A1 −A2)

+ρq(z1)q(z2)dz1dz2)

×(1− φ(1|xk−1)) (8)

where the calculations of ∂A1/∂xk and ∂A2/∂xk can be
found in [6].

Define h(xk, xk−1|x0) to be the joint pdf of the remaining
Euclidean distances at Sk and Sk−1 being xk and xk−1

respectively, conditioned on x0. We can derive f(xk|x0) from
h(xk, xk−1|x0). For k = 1, the calculation only depends on
the distance between S-D. Therefore:

f(x1|x0) =
∫∞
−∞

∂A(x0,rN (z1),x1)
∂x1

ρq(z1)dz1 (9)

× exp(− ∫∞
−∞ A(x0, rN (z1), x1)ρq(z1)dz1)(1− φ(1|x0)).

For k = 2, it is straightforward that:

h(x2, x1|x0) = g(x2|x1, x0)f(x1|x0). (10)

For k > 2, h(xk, xk−1|x0) can be calculated recursively:

h(xk, xk−1|x0)=

∫ x0

0

g(xk|xk−1, xk−2)h(xk−1, xk−2|x0)dxk−2.

Finally for k > 1, we have:

f(xk|x0) =

∫ x0

0

h(xk, xk−1|x0)dxk−1. (11)

Under LSM, the destination may be possibly reached in a
single hop no matter how far the remaining distance at that
hop is. Therefore, we have for k ≥ 2:

φ(k|x0) =

∫ x0

0

φ(1|xk−1)f(xk−1|x0)dxk−1. (12)

With Eq. 4, the derivation of φ(k|x0) is completed for k ≥ 1.
Define Φ(k|x0) to be the probability that a pair of S-D nodes

is connected by a path with at most k hops, conditioned on
x0. It is straightforward that:

Φ(k|x0) =

k∑
m=1

φ(m|x0) (13)

B. k-hop partial connectivity

In this sub-section, we derive the k-hop partial connectivity
for wireless multi-hop networks with M IN at known loca-
tions. Examples of the wireless multi-hop networks with one
IN or four INs are illustrated in Fig. 2. The following results
do not depend on the particular placement strategy of INs and
it remains our future work to find the optimal placement of
INs which maximize the k-hop partial connectivity.

Fig. 2. Examples of the information transmission from ONs to IN(s).

Define p(k) to be the fraction of ONs which are connected
to at least one IN by a path in at most k hops. Ignore the
spatial dependence problem, then p(k) is approximately equal
to the probability that an arbitrary ON is connected to at least
one IN in at most k hops. The accuracy of this approximation
is verified in Section V. Consider a network area A of size
‖A‖, where ‖A‖ = L2 for our case. Denote by Bi the location
of the ith IN. It is straightforward that

p(k) =
1

‖A‖
∫

A

[
1−

M∏

i=1

(1− Φ(m||Y − Bi|))
]
dY (14)

where |.| denotes the Euclidean norm. The product term inside
the integral in Eq. 14 is the probability that an ON at location
Y is not connected to the INs located at Bi in at most k hops.

V. SIMULATION RESULTS

In this section, we report on simulations to validate the
accuracy of the analytical results. The simulations are con-
ducted using a wireless network simulator written in C++. ONs
are randomly deployed in a 400× 400 square area following
a homogeneous Poisson process with intensity ρ = 0.003.
Simulations are also conducted for other network sizes (from
70 × 70 to 1800 × 1800) which showed similar results. Due
to the page limit, we omit the results for other network sizes.
For UDM, r0 is varied from 10 to 80, which results in the
average node degree varying from around 1 to 60. For LSM,
several values of η and σ are used in our simulations, but
only the results for η = σ = 4 are shown in this paper and
results for other values of σ showed similar trend. Every point
shown in the simulation result is the average value from 2000
simulations. As the number of instances of random networks
used in the simulation is large, the confidence interval is too
small to be distinguishable and hence is ignored in the figures.
In each plot, the transmission ranges required to achieve 0.9
k-hop partial connectivity, i.e. 90% of ONs are connected to
at least one IN in at most k hops, are shown for comparison.

Fig. 3 shows the k-hop partial connectivity under UDM
and LSM, for k = 5 and k = ∞. The feasible path length
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(d) Shortest path
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5−hop, SIM
5−hop, ANA

∞−hop, SIM

∞−hop, ANA
Conn, SIM

Fig. 3. The k-hop partial connectivity. SIM represents simulation result. ANA
represents analytical result. Conn represents the probability that all ONs are
connected to at least one IN, with no limit on the maximum number of hops.

distributions are based on the analysis introduced in this paper.
The shortest path length distribution under UDM (resp. LSM)
are based on the results in [12] (resp. [13]).

Firstly, it can be seen that the analytical results of k-
hop partial connectivity using GF is more accurate than the
analytical results using shortest path. This is because in our
analysis the impact of the spatial dependence problem is
carefully evaluated while the problem is ignored in previ-
ous research, e.g. [12], [13]. Secondly, one can observe a
significant reduction on the transmission range required for
partially connected network compared with that required for
its connected counterpart, where a network is (fully) connected
if all ONs are connected to at least one IN. Thirdly, the
limit on the maximum number of hops between S-D nodes
has a significant impact on the minimum transmission power
required to meet connectivity requirement. For example, Fig.
3(a) shows that the transmission range required for the 5-hop
partial connectivity to be 0.9 is 52−35

35 ≈49% more than the
transmission range required for the ∞-hop partial connectivity
to be 0.9. Hence, the limitation of the maximum path length
shall be carefully decided during network deployment.

Further, as shown in Fig. 4, the transmission ranges required
for the k-hop partial connectivity reduces as the number of
INs increases, for both k = 5 and k = ∞. Therefore a
small number of INs can provide improvements in terms of
throughput, energy consumption and connectivity. Finally, the
k-hop partial connectivity under the LSM is always higher than
that under UDM, given the same value of transmission range
(i.e. same transmission power Pt). This is because the variation
on the received signal strength introduced by the shadowing
results in a larger number of average node degree. A similar
observation is also obtained in the study of connectivity [17].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the concept of k-hop partial
connectivity based on the observations that in real networks,
it suffices to provide reliable services to most nodes (but not
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(b) ∞−hop
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Fig. 4. The k-hop partial connectivity with one IN and four INs.

necessarily all nodes) in the network. Therefore it is desirable
to limit the maximum number of hops between ONs and
their associated INs. Analytical results are given for the k-
hop partial connectivity which is validated by simulations. It
remains to find the optimal placements of INs and the benefits
of limiting the maximum number of hops on throughput,
which form our future work.
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