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Abstract—Infrastructure-based vehicular networks (consisting
of a group of Base Stations (BSs) along the road) will be widely
deployed to support Wireless Access in Vehicular Environment
(WAVE) and a series of safety and non-safety related applications
and services for vehicles on the road. As an important measure of
user satisfaction level, uplink connectivity probability is defined
as the probability that messages from vehicles can be received by
the infrastructure (i.e., BSs) through multi-hop paths. While on
the system side, downlink connectivity probability is defined as
the probability that messages can be broadcasted from BSs to all
vehicles through multi-hop paths, which indicates service cover-
age performance of a vehicular network. This paper proposes an
analytical model to predict both uplink and downlink connectivity
probabilities. Our analytical results, validated by simulations
and experiments, reveal the trade-off between these two key
performance metrics and the important system parameters, such
as BS and vehicle densities, radio coverage (or transmission
power), and maximum number of hops. This insightful knowledge
enables vehicular network engineers and operators to effectively
achieve high user satisfaction and good service coverage, with
necessary deployment of BSs along the road according to traffic
density, user requirements and service types.

Index Terms—Vehicular ad-hoc Network (VANET), Wireless
Access in Vehicular Environment (WAVE), IEEE 802.11p, IEEE
1609, Connectivity Probability

I. INTRODUCTION

Vehicles started to emerge as an important way of traveling

in Chinese daily life during the past decade. Since 2005, the

number of private car ownership keeps increasing by around

30% every year and has reached 34.43 million by the end

of 2010 [1]. Statistics also show that the average commuting

time in major cities of China is more than 60 minutes [2].

As people have to spend more and more time on road,

there is a strong demand to provide a media rich broadband

wireless communications system to passengers. China has

been carrying out an ambitious plan to build a national TD-

LTE mobile network. Meanwhile, the IEEE 802.11p and
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1609 standards are under development to support Wireless

Access in Vehicular Environment (WAVE) in VANETs and

to deliver safety and non-safety applications to vehicles on

the road [3][4]. However, how to provide easy and effective

communications between vehicles with dynamic mobility and

as well as between vehicles and roadside base stations still

remains an open and challenging area.

Various challenges need to be solved before an intelligent

vehicular network comes into reality. Due to the random

location and mobility of vehicles, and the limited roadside

resources, the connectivity among vehicles and BSs are not

naturally guaranteed. From passengers’ perspective, the uplink

connectivity probability, defined as the probability that mes-

sages from vehicles can be received by BSs through multi-

hop paths, is a critical performance metric and is arguably

the most important service requirement that directly affects

users’ experiences and satisfaction levels in data transmissions.

From roadside infrastructures’ perspective, the downlink con-

nectivity probability, defined as the probability that messages

can be broadcasted from BSs to all vehicles through multi-

hop paths is important and is related to the service coverage

of a vehicular network that determines the efficiency/quality

broadcasting services (from a BS to many vehicles), such

as safety and emergency information dissemination from a

traffic manager or a network operator to all vehicles. Several

ways can be used to improve both the uplink and down-

link connectivity probabilities including increasing the radio

coverage (or transmission power) of BSs, deploying more

BSs or allowing multi-hop communications. However, the

inter-cell interference may increase when the transmission

power of BSs increases or the number of BSs increases. The

more dense deployment of base stations will cost operators

more at up-front investments and maintenance, hence multi-

hop communications becomes an good solution for increasing

the chance of accessibility when a vehicle cannot directly

communicate with any BS (e.g., it is located in a coverage

gap between adjacent BSs) by enabling it to rely on its

neighboring vehicles to forward/relay data packets to/from a

nearby BS. Although using multi-hop communications can

greatly improve the connectivity probability, it will increase

transmission delay, the complexity and system overhead of the

routing algorithm and so on. Therefore, the maximum number

of hops a path can go through should be up bounded. Finally,

the probabilities are affected by real wireless channels (i.e.,

fadings) as well.

The connectivity probability in VANETs has been widely

studied. Factors such as traffic flow models (e.g., individual
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Fig. 1: Scenario of VANET along the road segment.

mobility models [20], random waypoint model [18], Poisson

distribution model [7], uniform distribution model), communi-

cation models (e.g., protocol model and physical model [17]),

dimensions of network (e.g., one-dimensional, 2-dimensional

network), and whether infrastructure is needed are considered

most frequently. List just a few very closely related work:

for ad-hoc-like networks, the authors in [6] derived a for-

mula for one-dimensional MANET with vehicles uniformly

distributed under a simple communication model (protocol

model). The authors in [8] addressed connectivity problem

in ad-hoc network under a realistic wireless channel model

with shadowing and fading effects (physical communications

model). In addition, closed-form formula for connectivity in

linear ad-hoc network was calculated in [9] under a novel

mobility model using multi-dimensional hypercube and hyper-

plane method. For infrastructure-based vehicle networks, con-

nectivity probability formula for a vehicle-to-BS connection

(defined as uplink connectivity probability in this paper)

was derived in [10] and [19] under Poisson distribution and

protocol model.

Those work above are insightful and important, however

results for ad-hoc-like networks cannot be directly used in

infrastructure-based networks, and results for infrastructure-

based networks only focus on simple communication models

(i.e., protocol models). Our work considers a realistic sce-

nario wherein wireless devices at roadside BSs and moving

vehicles have different coverage and capacity, and for the

first time, we differentiate and derive uplink and downlink

connectivity probabilities for infrastructure-based vehicular

networks. Moreover, we use a Poisson traffic model and a

log-normal shadow fading model for performance analysis

in this paper, but our analytical approach can be easily

extended to study connectivity probability under other traffic

and channel models. Our work can be regarded as an integra-

tion, enhancement and extension of those work. Finally, we

have already done some work to derive 2-hop connectivity

probability for infrastructure-based VANETs [11] and [12],

and it is straightforward to extend our work above to de-

rive multi-hop connectivity probability for infrastructure-based

VANETs. A recent closely related work in [5] provided an

analysis framework for probabilistic delay for the delivery of

vehicle-to-infrastructure packet under the concept of disrupted

connectivity for highways with low density. Our work is

complementary to this work, and focuses on the uplink and

downlink connectivity performance in multi-hop scenarios.

In this paper, we firstly derive and analyze the connectivity

probability between a pair of arbitrary base station and vehicle

(which can be regarded as connectivity probability in ad-hoc-

like networks) and then we move forward to study the uplink

and downlink connectivity probabilities for infrastructure-

based VANETs. The trade-off between some key performance

metrics and some important system parameters, such as BS

and vehicle densities, radio coverage (or transmission power),

and maximum number of hops, are fully investigated. This

insight knowledge enables vehicular network engineers and

operators to effectively achieve high user satisfaction and good

service coverage, with only necessary deployment of BSs

along the road according to traffic density, user requirements

and service types. Finally, our analytical results are validated

by both computer-based simulations and experiments (real-

traffic-flow-based simulations).
The rest of this paper is organized as follows. System model

of infrastructure-based vehicular networks is defined in section

II. The connectivity probability between an arbitrary pair of BS

and vehicle is derived in sections III. The multi-hop uplink and

downlink connectivity probabilities for infrastructure-based

VANETs are derived in section IV. Analytical, simulation and

experiment results are presented in section V, followed by

conclusions in section VI.

II. SYSTEM MODEL

The abstracted network scenario is presented in Fig. 1. In

this figure, roadside infrastructure (Base stations) is built along

the road, such as BS1 and BS2. A, B, C, ..., and H are vehicles

traveling on the road segment1. Here let L be length of the road

segment in meters.
Multi-hop relay is allowed in this network, and thus vehicles

without direct link to BSs will have connections to BSs if they

can find multi-hop relays (e.g., D can access BS1 via C, B, and

A2, and be accessed by BS1 via B and C). Vehicles that have no

multi-hop connections to BSs, such as E are isolated vehicles.

We assume there are some existing protocols to allow vehicle

to choose one of their neighboring vehicles with minimum-

hop connections to BSs be the next hop relay (e.g., F will

choose H instead of G as its next hop relay, and it can access

BS2 via just two hops). To guarantee the delay performance

in VANETs, a maximum number of hops a packet can travel

is assumed to be K.
For traffic flow models, first, Poisson distribution is used

to determine the random number of vehicles in our analysis,

where the probability that there are n vehicles on the road

segment is

f(n,L) =
(ρL)ne−ρL

n!
(1)

1Road segment is a part of a road between two adjacent BSs.
2There is only an unidirectional connection from BS1 to B, as BS1 is not

in the coverage radius of B.
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where ρ is the traffic density, defined as cars per meter.

This distribution has been partly verified by our field test.

During the field test, we collected real traffic data of S20

expressway in Shanghai from 0:00, Dec. 19 to 24:00, Dec.

20, 2010, CST. The number and average speed of vehicles

crossing the testing point were recorded every twenty seconds.

A histogram of number of cars (during a two-hour interval in

the evening) is shown in Fig. 2. From this figure, it can be seen

that the distribution of the number of vehicles approximately

follows Poisson distribution. Finally, given the number of

vehicles on the road, the vehicles are uniformly distributed

along the road segment.

Fig. 2: Histogram of S20 Traffic Flow.

For communication models, both the unit disk (protocol

model) and log-normal shadow communication model3 are

considered in this paper. For the unit disk model, any vehicle

pair or vehicle-BS pair is able to be connected if the distance

between each other is less than the coverage radius [15].

Expression for log-normal shadow model will be given in the

following section. In our analysis, the capacity of communica-

tion modules at different vehicles are assumed to be identical

and communication modules at different BSs stations are also

assumed to be identical.

III. CONNECTIVITY PROBABILITY BETWEEN AN

ARBITRARY PAIR OF BS AND VEHICLE

Define a k-hop neighbor of a BS to be a vehicle that is

able to receive messages from the BS via exactly k hops. Let

Φb
k(x) be the probability of the event that “a vehicle x meters

away from a BS is a k-hop neighbor of the BS”. Similarly,

define a k-hop neighbor of a vehicle to be a BS (or a vehicle)

that is able to receive messages from the vehicle via exactly k
hops. Let Φv

k(x) be the probability of the event that “a BS (or

a vehicle) x meters away from a specific vehicle is a k-hop

neighbor of the vehicle”. These two types of definitions are

corresponding to downlink transmission (i.e., safety or enter-

tainment information from BSs) and uplink transmission (i.e.,

feedback or request information from vehicles), respectively.

It is worth noting that the communication capabilities of BSs

and vehicles are usually different, so Φb
k(x) and Φv

k(x) are

expected to be different. The formula for Φb
k(x) will be derived

at first.

3Large-scale fading is implicitly incorporated in this model.

If a vehicle is a k-hop neighbor of a BS, then k should

satisfy the following equation

k =

⎧⎨
⎩

0, if the vehicle has no connection to the BS

1, if the vehicle has direct connection to the BS

min{hops of its neighbors} + 1, otherwise

Lemma 1: A vehicle is a k-hop neighbor of a specific BS,

if it is not n-hop (0 ≤ n < k) neighbor of the BS, and at least

one of its neighbors is a (k-1)-hop neighbor of the BS.

Lemma 1 is obvious, and the proof is omitted.

Φb
0(x) is the probability that a vehicle x meters away from

a BS is isolated from the BS. Meaning of Φb
1(x) is clear, i.e.,

under protocol model, if a vehicle is in the coverage radius of a

BS, it is able to receive messages from the BS with 100%, and

thus it is 100% a 1-hop neighbor of the BS. If coverage radius

of BSs is R, then Φb
1(x) can be expressed mathematically as

follows,

Φb
1(x) =

{
1, x < R
0, otherwise

(2)

Under log-normal shadow model (physical model) which is

more close to reality, from the following expression,

pr = p0 − 10α log10

x

d0
+ Nσ (3)

where pr is the received power (in dBmW) at target vehicle,

p0 is the power (in dBmW) at a reference distance d0, α is

the path loss exponent, Nσ is a Gaussian random variable

with zero mean and variance σ2, x is the Euclidean distance

between the BS and a vehicle, if threshold (pth) of the received

power for decoding at BSs is given, we have

Φb
1(x) = Pr(pr > pth) (4)

Now, we move to the stage of finding the value of Φb
i (x)

where i > 1 and present a lemma at first.

Lemma 2: The sum of Φb
i (x) (i = 0,1,2,...,+∞) is 1, i.e.,

+∞∑
i=0

Φb
i (x) = 1 (5)

Proof: For any vehicle x meters away from a BS, denote

Ei(x) be the event that “a vehicle x meters away from a BS

is a i-hop neighbor of the BS”. E0(x), E1(x), E2(x), ... , and

E+∞(x) are mutually disjoint events, and all of them forms

a sample space Ω. Therefore,

Pr(
+∞⋃
i=0

Ei(x)) =
+∞∑
i=0

Pr(Ei(x)) =
+∞∑
i=0

Φi(x) = 1

After going through Lemma 1 and 2, we have the following

proposition.

Proposition 1: when k > 1,

Φb
k(x) =

(
1 −

k−1∑
i=0

Φb
i (x)

)
(

1 − exp(−
∫

Γ

Φb
k−1(s) · Φv

1(x − s) · ρds)
)

(6)
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where Γ is integration area, and ds is integration increment4.

Proof: As shown in Fig. 3, area enclosed by dashed line

and borders of road segment (denoted as Γ) is where possible

neighbors of the target vehicle (a vehicle arbitrarily chosen for

the analysis) could be found.

Fig. 3: Target vehicle x meters away from a BS is k-hop

neighbor of the BS.

Set position of the BS as reference point. Then we start our

analysis from a point that is s meters away from the BS.

Lemma 1 tells us that a vehicle has to meet two require-

ments in order to define itself as k-hop neighbor of a specific

BS. In fact, left part of the righthand side of (6) is expressed in

terms of the first condition, i.e., the probability that the vehicle

is not 0, 1, 2... and (k−1)-hop neighbor of the BS. Let G(x)
be the event that “for a specific vehicle x meters away from

the BS, at least one of its neighbors is a (k−1)-hop neighbor

of the BS”. Then the right part of the righthand side of (6) is

just the probability of G(x), but it needs a bit explanation.

Let g(s) be probability that no vehicle in s∩Γ is a (k−1)-

hop neighbor of the BS. Then, g(s + ds) is probability of the

event that “no vehicle in (s+ds)∩Γ is a (k−1)-hop neighbor

of the BS”. This event is equivalent to the event that “there

are no vehicles in s ∩ Γ and ds is a (k−1)-hop neighbor of

the BS”. Let f(ds) denote the probability that there is at least

one vehicle traveling in ds, then we can express g(s + ds) as

g(s + ds) = g(s) · (1 − f(ds) · Φb
k−1(s) · Φv

1(x − s)) (7)

Following Poisson distribution, when ds is infinitely small,

we have

f(ds) = ρds (8)

Then, re-arrange (7), we have a differential equation,

g(s + ds) − g(s)
ds

= −g(s) · Φb
k−1(s) · ρ · Φv

1(x − s)

⇒ g′(s) = −g(s) · Φb
k−1(s) · ρ · Φv

1(x − s) (9)

Solve (9) and we have the probability of G(x)

Pr(G(x)) =
∫

Γ

dg(s)ds

= C · exp(−
∫

Γ

Φb
k−1(s)Φ

v
1(x − s)ρds)(10)

Note the constant number C equals 1, as Pr(G(x)) should

be in the interval [0, 1].

4In our analysis, for simplicity Γ could be regarded as 1-dimensional
integration interval, while actually, if distributions for traffic flows on different
lanes are known, then we could modify (6) a little bit into double integration
to support 2-dimensional scenarios.

Effortlessly, we have the probability of G(x)

Pr(G(x)) = 1 − exp(−
∫

Γ

Φb
k−1(s) · Φv

1(x − s) · ρds) (11)

which is just the right part of righthand side of (6).

Similarly, the probability that a BS is a k-hop neighbor of

a vehicle can be written as

Φv
k(x) =

(
1 −

k−1∑
i=0

Φv
i (x)

)
(

1 − exp(−
∫

Γ

Φv
k−1(s) · Φv

1(x − s)ρds)
)

(12)

where for unit disk model

Φv
1(x) =

{
1, x < r
0, otherwise

(13)

, and for log-normal model, with (3), we have

Φv
1(x) = Pr(pr > p

′
th) (14)

where p
′
th is threshold of received power for decoding at the

vehicles.

For simplicity, Φb
0(x) is approximated to be probability that

the BS has no 1-hop neighbors, and Φv
0(x) is approximated to

be probability that the target vehicle has no 1-hop neighbors.

Note that since Φb
1(x) and Φv

1(x) are different, values for (6)

and (12) are expected to be different. For some other traffic and

communication models, if f(ds), Φv
1(x) and Φb

1(x) are known,

then (6) and (12) can be easily extended. And for Φv
k(x), it

can be regarded as the connectivity probability formula for

pure ad-hoc-like networks.

IV. CONNECTIVITY PROBABILITY FOR

MULTI-HOP INFRASTRUCTURE-BASED VANETS

Rationale behind the difference in the definitions for up-

link and downlink connectivity probability is that capacities

(transmit/receive radii) of BSs and vehicles are different and

safety information broadcasting in VANETs has the highest

priority, so for downlink transmission, how to guarantee that

all vehicles are able to receive safety information should be

focused, while for uplink transmission, it is not that strict5

(e.g., if 98% of messages from vehicles can be received by

the infrastructure, then uplink connectivity performance may

also be regarded as good).

A. Uplink Connectivity Probability

The uplink connectivity probability is presented in the

following proposition.

Proposition 2: Multi-hop uplink connectivity probability

for infrastructure based VANETs is

pu =
∫ L

0

dx

L

{
1 −

(
1 −

K∑
i=1

Φv
i (x)

) (
1 −

K∑
i=1

Φv
i (L − x)

)}
(15)

Proof: Let H(x) be the event that “messages from a vehi-

cle x meters from BS1 can be received by the infrastructure”.

5For pure VANETs, since every node (vehicle) in the network is identical,
there are no uplink and downlink differences.
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If H(x) is true, then “either BS1 or BS2 or they both are n-hop

(n=1,2,..., or K) neighbors of the vehicle”. Thus the probability

of H(x) is

Pr(H(x)) = 1 −
(

1 −
K∑

i=1

Φv
i (x)

) (
1 −

K∑
i=1

Φv
i (L − x)

)
(16)

The uplink connectivity probability can be regarded as the

expectation of the probability that “messages from an arbitrary

vehicle can be received by the infrastructure”. Hence the

uplink connectivity probability is

pu =
∫ L

0

Pr(H(x))
dx

L
(17)

and thus (15) is obtained.

B. Downlink Connectivity Probability

We divided the road segment equally into two parts: left and

right part. If messages can be broadcast from infrastructure

to all vehicles on the road segment, then approximately all

vehicles traveling on the left part can be accessed by BS1 (i.e.,

messages from BS1 can reach these vehicles) and all vehicles

on the right part can be accessed by BS2.

Lemma 3: The probability that all vehicles traveling on

the right part can be accessed by BS2 is approximately the

probability that vehicle farthest to BS2 can be accessed by

BS2.

Proof: Φv
k(x) contains information about connection con-

ditions with neighboring vehicles, and thus vehicles traveling

on the right part farthest to BS2 has the least probability to be

accessed by BS2. If that vehicle can be accessed by BS2, then

we can assume all vehicles on the right half can be accessed

by BS2.

With Lemma 3, we have the following proposition,

Proposition 3: Multi-hop downlink connectivity probability

for infrastructure based VANETs is

pd =
{

e−
ρL
2 +

∫ L
2

0

ρdu · e−ρu ·
( K∑

i=1

Φb
i (

L

2
− u)

)}2

(18)

Proof: We derive the downlink connectivity probability

for the right part at first. As shown in Fig. 4, the central line

of the road segment is set as reference, and direction BS1 →
BS2 is set as positive direction.

Fig. 4: The farthest vehicle to BS2 lies in the area (u, u+du).

Define T (u) as the event that “the farthest vehicle which

can be accessed by BS2 in the right part lies in (u, u + du)”.

More intuitively, T (u) is equivalent to the event that “there

are no vehicles in (0, u), and there is one n-hop (n=1,2,..., or

K) neighbor of BS2 in (u, u + du)”. With (1) we have

Pr(T (u)) = e−ρu · ρdu ·
( K∑

i=1

Φb
i (

L

2
− u)

)
(19)

If there are no vehicles traveling on the right part of the road

segment, network along the right part is also be considered as

fully connected. Denoted this event as κ, according to (1), the

probability of κ is

Pr(κ) = e−
ρL
2 (20)

Derivation for the left half is the same, and they are

independent to each other. Thus finally we will have (18).

V. NUMERICAL RESULTS AND DISCUSSIONS

Both computer-based simulations and experiments (real-

traffic-flow-based simulations) have been done to validate our

analytical results. For the computer-based simulations, 10000

Poisson distribution realizations were generated to indicate

positions of vehicles on the road segment. Then the downlink

and uplink connectivity probabilities were calculated during

each realization and averaged over all realizations. For the

experiments, four hidden radars were installed on expressway

S20 in Shanghai to monitor traffic flows. The number and

average speed of vehicles crossing the testing point were

recorded every twenty seconds for eight days. Average traffic

density ρ were calculated to be 0.0350 and 0.0845 cars per

meters during non-busy periods (from 22:00 to 23:59, Dec. 19,

2010, CST) and busy periods (from 12:32 to 16:42, Dec. 19,

2010 CST), respectively. Analytical results were derived from

equations (15) and (18). Different vehicle traffic densities,

inter-BS distances, radio coverage ranges (BS and vehicle),

and multi-hop communication capabilities were considered.

Fig. 5 (a) and (b) show the uplink connectivity probabilities

pu during non-busy and busy periods as a function of inter-

BS distance L under unit disk model. In both cases, simula-

tion and experiment results match very well with analytical

results under different multi-hop communications conditions.

Obviously, single-hop uplink connectivity probability achieves

100% when L is less than 2r (1000 meters). In multi-hop com-

munications, the probability of finding multiple relays (one for

each hop) declines when the number of hops increases. So the

turning points for K-hop (K = 2, 3, 4) uplink connectivity

probability curves are slightly less than 2Kr in both (a) and

(b)6. When inter-BS distance L becomes larger than these

turning points, the corresponding pu curves are monotonically

decreasing in parallel, with a vertical gap of 2r/L between

adjacent curves. So network designers can effectively control

and manage uplink connectivity probability performance for

vehicles/end-users by applying gradual impact from inter-BS

distance L (related to network investment) and/or stepwise

impact from hop number K (related to operation complexity).

6During busy periods, number of neighboring vehicles is larger, thus the
probability of finding multi-hop relays is higher, so turning points in (b) are
larger than that in (a).
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(a) Non-busy Periods (b) Busy Periods

Fig. 5: Uplink Connectivity Probability, R = 1000m, r = 500m (under unit disk model).

(a) Non-busy Periods (b) Busy Periods

Fig. 6: Downlink Connectivity Probability, R = 1000m, r = 500m (under unit disk model).

Fig. 6 (a) and (b) show the downlink connectivity proba-

bilities pd as function of inter-BS distance L under unit disk

model. As seen, analytical, simulation and experiment results

are better matched in (b) than that in (a). Turning points of

experiment curve for 4-hop pd in (a) deviates that of analytical

and simulation curves a little bit. Similar as turning points in

Fig. 5, the falling-down edges of for single-hop and multi-hop

analytical and simulation curves are located at L=2R+2(K-1)r
(slightly to the left due to the same reasons as in Fig. 5). These

sharp edges indicate the technical challenges, key system

parameters and basic rules in designing and realizing a fully

connected vehicular network.

Form pu and pd curves in Figs. 5 and 6, it is seen that

the turning points for the downlink connectivity curves start

from 2R (2000m) while turning points for uplink connectivity

start from 2r (1000m), which indicates that if R > r, then

downlink transmission is more reliable than uplink trans-

mission in the same network. Also pu and pd curves in

Figs. 5 and 6 demonstrate the accuracy of our analytical

approach and results, i.e., (15) and (18), which can effectively

guide the real-world practice of vehicular network design,

implementation and management. In particular, they enable

network designers and operators to achieve and guarantee

predefined performance targets, in terms of the uplink and

the downlink connectivity probabilities, under different vehicle

traffic density, radio coverage and multi-hop communications

conditions. The horizontal gaps 2r between adjacent turning

points (Fig. 5) and adjacent edges (Fig. 6) reveal the trade-off

between hop number K and inter-BS distance L under the same

connectivity performance. Specifically, without affecting the

100% connectivity probability performance, L can be extended

by a distance of 2r (meaning less BSs and less investment)

when one more hop is allowed in vehicular communication

networks7.

Fig. 7 (a) and (b) shows the uplink connectivity probability

performance as a function of radio coverage range r of a

vehicle under unit disk model. When r is less than 1/ρ, it

is hard to find any neighboring vehicles as a relay, so the

uplink connectivity probability curves for different multi-hop

capabilities are indistinguishable in the range of [0, 1/ρ].

As r increases, the advantages of multi-hop communications

get clearer. The exact locations of the saturation points for

these curves reaching the maximum 100% uplink connectivity

probability can be estimated as rs = L/(2K) + (K-1)/(Kρ), K=1,

2, 3, 4.

Fig. 8 (a) and (b) shows the downlink connectivity probabil-

7This conclusion is valid when traffic density ρ is sufficiently large.
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(a) Non-busy Periods (b) Busy Periods

Fig. 7: Uplink Connectivity Probability, L = 2500m, R = 1000m (under unit disk model).

(a) Non-busy Periods (b) Busy Periods

Fig. 8: Downlink Connectivity Probability, L = 2500m, R = 1000m (under unit disk model).

ity as a function of vehicle coverage range r under unit disk

model. The sharp rising edges of these curves indicate the

critical conditions for realizing a fully connected vehicular

network. Note that the rising edge of single-hop curve is

located at r=1250 meters and, therefore, not presented in

Fig. 8. These two figures clearly demonstrate the trade-off be-

tween service performance, in terms of downlink connectivity

probability, and key system parameters, i.e., hop number K
and vehicle coverage range r, which determine the operation

complexity and transmission power of vehicles. Comparing

(a) and (b), it is seen that turning-points in (b) are smaller

than that in (a), which indicates that when traffic density ρ
is high, without impacting the 100% downlink connectivity

probability, vehicle coverage range r can be decreased to

save energy and reduce interference. Moreover, comparing (a)

and (b), it is seen that the experiment results for non-busy

periods have higher attenuations, which is due to that vehicle

density is lower in non-busy periods, and as each vehicle has

fewer neighboring vehicles (statistically), it is more difficult

to identify relays for establishing a connection with a roadside

BS.

The impact of inter-vehicle distance, i.e., the inverse of traf-

fic density parameter ρ, on the uplink connectivity probability

performance is shown in Fig. 9 for different multi-hop con-

ditions under unit disk model. Considering a specific vehicle,

single-hop uplink connectivity probability curve depends on

its location and is therefore fixed at 2r/L = 0.4. Multi-hop pu

curves start from the values of min{1, 2Kr/L} (when traffic

density is very high) and are then monotonically decreasing as

inter-vehicle distance increases, which means fewer and fewer

neighboring vehicles can be found and used as relay.

Fig. 9: Uplink Connectivity Probability, L = 2500m, R =

1200m, r = 500m (under unit disk model).

By using Figs. 8-9 as a practical guidance, a network
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designer or operator can effectively conduct (through roadside

BSs) dynamic transmission power control among neighboring

vehicles, thus to minimize energy consumption, interference

and multi-hop complexity while achieving the predefined

network service performance.
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Fig. 10: Downlink Connectivity Probability, L = 2500m, R =

1000m, r = 500m (Comparisons under unit disk model and

log-normal shadow model).

Fig. 10 shows comparisons between analytical results of the

downlink connectivity probability under unit disk model with

that under log-normal shadow model during non-busy periods.

Here, α = 3, σ = 8dB, ρ = 0.015 cars/meter. As seen, the

downlink connectivity curves for unit disk model have sharper

falling-down edges. The single-hop downlink connectivity

curve for unit disk model indicates better performance when

L < 2000, while for the multi-hop downlink connectivity

probability curves, results under log-normal shadow model

outstrip that under unit disk model, which indicates that for

multi-hop VANETs, shadow increases connectivity probability.

Moreover, when σ is zero, curves under both models are the

same, and thus, results under unit disk model can be regarded

as special cases of that under log-normal shadow model.

VI. CONCLUSIONS

In this paper, an analytical model supporting multi-hop

relay for infrastructure-based vehicular networks was pro-

posed. Based on this model, formulae for multi-hop uplink

and downlink connectivity probabilities were derived. These

analytical results, verified by computer simulations and ex-

periments, reveal the trade-off between these key performance

metrics and some important system parameters, such as BS

and vehicle densities, radio coverage (or transmission power),

and the maximum number of hops a path contains. This insight

knowledge enables vehicular network engineers and operators

to effectively achieve high user satisfaction and good service

coverage, with only necessary deployment of BSs along the

road according to traffic density, user requirements and service

types. Our analytical approach and results will be extended by

considering more practical traffic flow models.
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