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Abstract—Broadcast in mobile ad-hoc networks is a chal-
lenging and resource demanding task, due to the effects of
dynamic network topology and channel randomness. In this
paper, we consider 2D wireless ad-hoc networks where nodes are
randomly distributed and move following a random direction
mobility model. A piece of information is broadcast from an
arbitrary node. Based on an in-depth analysis into the popular
Susceptible-Infectious-Recovered (SIR) epidemic routing algo-
rithm for mobile ad-hoc networks, an energy and spectrum
efficient broadcast scheme is proposed, which is able to adapt
to fast-changing network topology and channel randomness.
Analytical results are provided to characterize the performance
of the proposed scheme, including the fraction of nodes that
can receive the information and the delay of information
propagation. The accuracy of analytical results is verified using
simulations.

Index Terms—mobile ad-hoc networks, shadowing, oppor-
tunistic routing, epidemic routing

I. Introduction

A mobile ad-hoc network (MANET) is a self-organizing

network composed of mobile devices like smart phones,

tablet PCs or intelligent vehicles. In a MANET, information

propagation relies on local ad-hoc connections that emerge

opportunistically as devices move and meet each other. Such

ad-hoc connections are determined by two major factors:

dynamic topology and channel randomness.

The dynamic topology of a MANET often resembles the

topology of a human network, in the sense that the mobility of

nodes in a MANET is not only similar to, but often governed

by, the movements of their human owners. In view of this,

epidemic routing algorithms [1], [2] have been proposed

as a fast and reliable approach to broadcast information

in MANETs. On the other hand, unlike the spreading of

epidemic disease in human networks, the information propa-

gation scheme in MANETs can often be carefully designed.

In addition to varying network topology, channel random-

ness also has a significant impact on information broadcast

in MANETs. It has been shown that channel shadowing has

negative impacts on information propagation in MANETs

using traditional routing algorithms like Ad hoc On Demand

Distance Vector (AODV). Further, the wireless connection
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between two nodes can be affected by the activity of other

nodes. A typical example is the cognitive radio network

[3], where secondary users communicate with each other by

exploiting spectrum holes - the channels that are temporarily

and locally unused by primary users. Due to the uncertainty in

the presence of spectrum holes, shadowing effect and mobility

of users, information propagation in mobile networks requires

an adaptive and flexible scheme to conquer these challenges.

On the basis of an in-depth analysis of the epidemic

algorithm, this paper proposes an opportunistic broadcast

scheme particularly suited for MANETs while achieving cer-

tain goals, e.g. reducing energy or bandwidth consumption.

More specifically, the following contributions are made in

the paper: 1) an opportunistic broadcast scheme is proposed,

motivated by the analysis of the information propagation

process using an epidemic routing algorithm; 2) it is shown

that in comparison with the epidemic routing algorithm,

the opportunistic broadcast scheme leads to less energy

and bandwidth consumption to achieve the same number

of recipients, i.e. the same fraction of nodes that receive

the information; 3) the opportunistic broadcast scheme is

adaptive to channel randomness, such as the shadowing

effects and the uncertainty in the availability of transmission

opportunities like spectrum holes or assigned time slots; 4)

analytical results for the performance of the opportunistic

broadcast scheme are presented, including the fraction of

nodes that receive the information and time delay; 5) it is

shown that shadowing effects benefit the performance of the

opportunistic broadcast scheme, measured by the above two

metrics, which is in contrast with previous studies, e.g. [4],

considering traditional routing algorithms.

The rest of this paper is organized as follows: Section II

reviews related work. Section III introduces the system

model. The analysis of the information propagation process

is presented in Section IV. Section V validates the analysis

using simulations. Finally Section VI concludes this paper

and proposes possible future work.

II. Related work

Epidemic routing algorithms have been popular choices

for information broadcast in MANETs. Early studies, e.g.

[5], assumed that a network is connected at any time instant,

where a network is connected if and only if (iff) there is at

least one path connecting any pair of nodes. However, it is

often costly or impractical to ensure that a network is always

connected [1], due to fast-changing network topology or
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channel randomness. Hence this paper studies MANETs from

percolation perspective, as described rigorously in Section IV.

In [6], Chen et al. studied the information propagation pro-

cess using a Susceptible-Infectious (SI) epidemic algorithm,

which though reliable is a costly scheme due to lack of a

proper mechanism to stop the transmission. Considering a

Susceptible-Infectious-Recovered (SIR) epidemic algorithm,

our previous work [2] studied the information propagation

process in a MANET under the same setting as this paper. The

SIR algorithm postulates that nodes need to keep transmitting

for a prescribed time period. A drawback is that a long and

uninterrupted transmitting period can be difficult to allocate

in some practical networks, e.g. a cognitive radio network.

This paper takes a further step toward developing a broadcast

scheme addressing the difficulty in information propagation

in MANETs subject to channel randomness.

There are other broadcast schemes for MANETs beside

epidemic algorithms. Friedman et al. [7] reviewed some

gossip-based algorithms that can be suitable for information

broadcast in MANETs. They pointed out that achieving high

energy and spectrum efficiencies are challenging and open

problems. Wu et al. [8] studied the use of ferries, viz. nodes

with controllable mobility, to improve information propaga-

tion in ad-hoc networks. In contrast, this paper focuses on

MANETs where the nodes move uncontrollably.

III. System model

A. Network model

Consider a MANET where at some initial time nodes are

independently and identically distributed (i.i.d.) on a torus

(0, L]2 following a homogeneous Poisson point process with

intensity λ. It follows that the expected number of nodes in

the network is N = λL2.

A commonly-used radio propagation model is the unit
disk model (UDM), under which two nodes are directly

connected iff the distance between them is not larger than the

radio range r0. Specifically, under UDM, the received signal

strength (RSS) at a receiver separated by distance x from the

transmitter is Pu(x) = CPt x−η, where C is a constant, Pt is the

transmission power common to all nodes and η is the path loss

exponent, which can vary from 2 in free space to 6 in urban

areas [9]. A transmission is successful iff the RSS exceeds

a given threshold Pmin. Therefore, the required transmission

power Pt allowing a radio range r0 is Pt =
Pmin

C rη
0
.

In reality, the actual RSS may have significant variations

around the mean value; this is typically taken into account

in the log-normal shadowing model (LSM) [9]. Under LSM,

the RSS attenuation (in dB) follows a Gaussian distribution:

10 log10(Pl(x)/CPt x−η) ∼ Z, where Pl(x) is the RSS under

LSM and Z is a zero-mean Gaussian distributed random

variable with standard deviation σ. When σ = 0, the model

reduces to the UDM. In practice, the value of σ is often

computed from measurement data and can be as large as 12

[9]. Denote by q(z) the probability density function (pdf) of

the shadowing fades Z; then: q(z) = 1

σ
√

2π
exp(− z2

2σ2 ).

As widely assumed in the literature [9], we consider that

the shadowing fades Z between all pairs of transmitter and

receiver are i.i.d. and the link is symmetric.

Regarding mobility, we adopt the random direction model

(RDM) [10]. Specifically, each node chooses its direction

independently and uniformly in [0, 2π), and then move there-

after at a constant speed V . The information propagation

process under other mobility models, e.g. those incorporating

time variations of speed and direction, can be studied through

a similar technique as that shown in the paper, which however

requires a more complex analysis and is left as future work.
Note that under the aforementioned model, at any time

instant, the spatial distribution of nodes is stationary and

follows a homogeneous Poisson process with intensity λ [11].

B. Broadcast scheme
Suppose that a piece of information is broadcast from an

arbitrary node. Once a node receives the information for the

first time, it becomes infectious. The infectious node holds the

information for a fixed amount of time τs (called the sleeping
time interval) followed by a random but bounded amount

of time τr (to be described in the next paragraph), then re-

transmits the information (to all nodes directly connected

to the infectious node) for a prescribed amount of time τa

(called the transmitting time interval). Such a sleep-active
cycle repeats for a fixed number of times, denoted by a

positive integer β, after which the node recovers. A recovered

node stops transmitting the information and will ignore all

future transmissions of the same information that it receives.

Therefore, the total transmitting time of an infectious node is

βτa. The information propagation process naturally stops (i.e.

reaches the steady state) when there is no infectious node in

the network; and the nodes that have received the information

are referred to as the informed nodes. An animation of the

information propagation process is available on [12].
It is worth noting that we require the random time interval

τs+τr after each transmission to accomplish three objectives:

firstly, τs is chosen to allow sufficient time (e.g. Vτs ≥ 2r0)

for a node to move away from the location of its previous

broadcast, to reduce repeating transmission to the same set of

nodes; secondly, τr introduces randomness in the transmitting

time instants, which can reduce collisions and contention

between nodes caused by simultaneous transmissions; thirdly,

τr provides flexibility in determining the transmitting time of

a node, so that a node can transmit at its convenience (e.g.

at assigned time slots or to exploit locally available spectrum

holes) in a decentralized manner while the performance

of a broadcast in the whole network (e.g. certain fraction

of informed nodes) is still guaranteed. These features are

valuable for a MANET subject to dynamic topology and

channel randomness.
Denote by pτ(τr) the pdf of τr, which is determined by

practical implementation, such as the choice of media access

control protocols (e.g. CSMA or TDMA). Using CSMA for

example, if a node finds the channel busy after its sleeping

time interval τs, then a random back-off time is often used,

whose distribution determines the distribution of τr.
The above scheme is referred to as a general broadcast

scheme. Note that when β = 1, τs = 0 and τr takes a constant

value 0, the general broadcast scheme becomes a traditional

SIR epidemic algorithm [1], [2].
Further, an opportunistic broadcast scheme in Section IV,

where τa is set to the minimum time required to transmit a

single packet as motivated by the analysis, so that a secondary

user can take the opportunity of a short spectrum hole and

transmit its data.

319



The network introduced in this section is denoted by G.

Further, we impose the requirement of a sufficiently large

network, i.e. L > β(τs + max{τr} + τa)V , so that a node will

not be wrapped through its motion in the torus back to the

point where it became infected, at least not before it recovers.

IV. Analysis of the information propagation process

A. The effective node degree - definition

We first propose a single metric to summarize the impact

of different parameters, i.e. λ,V, r0, β, τs, τr and τa, on the in-

formation propagation process of a MANET. As an extension

of our previous work in [2], the metric is defined as follows.

Definition 1. The effective node degree R0 of an infectious

node is the expected number of nodes that are directly

connected to the infectious node during its total transmitting

time, whose length is βτa.

Note that R0 is the same for all nodes due to the stationarity

and homogeneity of node distribution on the torus. Assuming

the knowledge of R0, whose evaluation is studied later, the

next sub-section reviews some fundamental properties of the

information propagation process.

B. Fraction of informed nodes

We first study the fraction of informed nodes from the

percolation perspective asymptotically, i.e. we increase the

network area to infinity (i.e. let L→ ∞) while keeping other

parameters (i.e. λ,V, r0, β, τs, τr and τa) unchanged.

Definition 2. The percolation probability pc of a MANET

is the probability that a piece of information broadcast from

an arbitrary node can be received by a non-vanishingly-small
fraction of nodes asymptotically.

Define z0 as the expected fraction of informed nodes in the

steady state. Then we report the following two results:

Theorem 1. Consider a network G, whose effective node
degree is R0. The percolation probability satisfies pc ≤ 1 +
1

R0
W(−R0e−R0 ), where W(.) is the Lambert W Function.

Theorem 2. Consider a network G, whose effective node
degree is R0. The expected fraction of informed nodes in the
steady state satisfies z0 ≤ (1 + 1

R0
W(−R0e−R0 ))2, where W(.)

is the Lambert W Function.

Using the same technique as that shown in [2], the above

two theorems can be readily proved for the broadcast schemes

considered in this paper. The proof is therefore omitted and

it is further verified by simulation in Section V that the

analytical bound is close to the actual value.

It can be seen that the effective node degree determines

the performance of the broadcast scheme. We next present

further analysis into the effective node degree.

C. The effective node degree - analysis

It is clear that the consumptions of bandwidth and energy

are determined by the transmitting time. Therefore, we next

study the choice of the transmitting time interval τa.

Denote Rτa as the effective node degree associated with a

sleep-active cycle with transmitting time τa. Then, we pro-

pose a metric to gauge the spectrum and energy efficiencies.

Definition 3. The transmission efficiency E(τa) � Rτa
τa

is the

effective node degree per unit of transmitting time in a sleep-

active cycle of an arbitrary infectious node.

Lemma 1. Consider a network G, where all parameters are
fixed except τa. To maximize the transmission efficiency, τa

needs to be minimized.

Proof: In a large network (i.e. L > β(τs+max{τr}+τa)V)

under UDM, we have Rτa =
8r0Vλτa
π
+ πr2

0λ [2]. Then:

E(τa) �
Rτa

τa
=

8r0Vλτa
π
+ πr2

0λ

τa
=

8r0Vλ
π
+
πr2

0λ

τa
. (1)

It is clear that E(τa) is a decreasing function of τa. The

same conclusion can be obtained using the same method for

the LSM, which is not included here due to page limits.

Remark 1. According to Lemma 1, in order to maximize the

transmission efficiency, τa should be set to the minimum time

required to transmit a piece of information. Considering that

broadcast is usually used for small pieces of information, such

as advertisements or emergency alerts, the transmission time

of a packet is usually in the order of milliseconds 1. Further,

because the typical moving speed is 1.5m/s for human or

10m/s for vehicles [13], the displacement of a node during a

time τa is in the order of millimeters, which is negligible

(hence ignored hereafter) compared with the radio range

(usually in the order of meters).

Remark 2. The reduction of τa can not only save energy

and bandwidth, but also facilitate opportunistic broadcasting.

For example, it can be difficult for the secondary users in a

cognitive radio network to find a spectrum hole with a long

period, say 100 seconds [2]. On the other hand, using the

opportunistic broadcast scheme, a secondary user can take

the opportunity of a short spectrum hole and transmit its data.

Next, we propose the following metric to facilitate the

choice of sleeping time interval τs, which determines when

a node transmits.

Definition 4. The clustering factor φ(τs) is the expected

number of nodes that are directly connected to an infectious

node in both a given transmission and the following one.

In order to incorporate channel randomness into the anal-

ysis, we need the following lemma.

Lemma 2 ([14]). Suppose the wireless channel between a
transmitter (S ) and a receiver has shadowing fades zS . Then
these two nodes are connected iff their distance x satisfies:

x ≤ r0 exp(
zS ln 10

10η
) � rN(zS ). (2)

Using Lemma 2, we have the following results.

Lemma 3. Consider a network G. The clustering factor
satisfies

φ(τs) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

∫ θm

0

|Ap(θ, rN(z1), rN(z2))|

×λ
π

pτ(τr)q(z1)q(z2)dτrdθdz1dz2. (3)

1For example, the time required to transmit a packet of size 256 bytes via
a 10Mbps link is 256×8

10M = 204.8μs.
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where θm = 2 arcsin rN (z1)+rN (z2)
2V(τs+τr)

and |Ap(θ, r1, r2)| is given by
Eq. 4.

Proof: Denote by Θ the angle measured counterclock-

wise from the moving direction of an infectious node to

the moving direction of an arbitrary node. According to the

mobility model introduced in Section III, it is straightforward

that Θ is uniformly distributed in [0, 2π).
Suppose that an infectious node transmits once at point S 1,

then it moves by distance (τs+τr)V to point S 2 and transmits

again, as shown in Fig. 1.

Next, we focus on a subset of nodes that fulfill the follow-

ing three conditions: 1) they move in direction Θ ∈ (θ, θ+dθ);
2) their RSS from the infectious node has shadowing fades

Z1 ∈ [z1, z1 + dz1] when the infectious node transmits at

S 1; 3) their RSS from the infectious node has shadowing

fades Z2 ∈ [z2, z2 + dz2] when the infectious node transmits

at S 2. Due to the independence of shadowing fades and

the thinning property of Poisson processes, these nodes are

distributed following a homogeneous Poisson process with

intensity λ
2π

q(z1)q(z2)dθdz1dz2. Among this subset of nodes,

the nodes that are connected to the infectious node in the first

transmission are in the disk centered at point S 1 with radius

rN(z1), which is denoted by C(S 1, rN(z1)). Further, when the

infectious node transmits at S 2, these nodes move by distance

(τs + τr)V from being contained in C(S 1, rN(z1)) to being

contained in a new disk C(B, rN(z1)) 2 as shown in Fig. 1.

Then, the nodes connected to the infectious node in both two

transmissions are in the area C(S 2, rN(z2)) ∩ C(B, rN(z1)) �
Ap(θ, rN(z1), rN(z2)), as shown in Fig. 1, whose size can be

calculated using the following formula:

|Ap(θ, r1, r2)|=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(πr2
1, πr

2
2), for ψ(θ) ≤ |r1 − r2|

r2
1 arccos(

ψ2(θ)+r2
1
−r2

2

2r1ψ(θ)
) + r2

2 arccos(
ψ2(θ)+r2

2
−r2

1

2r2ψ(θ)
)

− 1
2

√
[(r1 + r2)2−ψ2(θ)][ψ2(θ)− (r1 − r2)2],

for|r1 − r2| < ψ(θ) < r1 + r2

0, otherwise
(4)

where ψ(θ) = 2(τs + τr)V sin θ
2

is the length of BS 2.

Next we consider all subsets of nodes. Note that the inter-

sectional area only exists when |θ| < 2 arcsin rN (z1)+rN (z2)
2V(τs+τr)

� θm;

and only the cases for θ ∈ (0, θm) need to be calculated due

to symmetry. Therefore, the clustering factor satisfies

φ(τs) = λE[|Ap(θ, rN(z1), rN(z2))|] (5)

= λ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

2

∫ θm

0

|Ap(θ, rN(z1), rN(z2))|

× 1

2π
pτ(τr)q(z1)q(z2)dτrdθdz1dz2.

Finally, we have the following theorem for the value of R0.

Theorem 3. The effective node degree of a network G using
the proposed opportunistic broadcast scheme satisfies

R0 ≤ βλπr2
0 exp

(
(σ ln 10)2

50η2

)
− (β − 1)φ(τs). (6)

Proof: We first consider two consecutive transmissions.

Along the same lines as Lemma 3, define φ(τs|z1, z2) to be

2The directions of nodes can differ by dθ, whose impact on the analysis
however becomes vanishingly small when dθ → 0 while (τs + τr)V is finite.

Fig. 1. An illustration to the nodes connected to an infectious node in both
two consecutive transmissions. Symbols are defined in Lemma 3.

the clustering factor conditioned on the shadowing fades of

the first transmission (resp. the second transmission) being

Z1 ∈ [z1, z1+dz1] (resp. Z2 ∈ [z2, z2+dz2]). Then, the expected

number of nodes connected to an infectious node in either of

the two transmissions can be calculated using Lemma 2:∫ ∞

−∞

∫ ∞

−∞

(
λπ(rN(z1))2 + λπ(rN(z2))2 − φ(τs|z1, z2)

)
q(z1)q(z2)dz1dz2 (7)

= 2

∫ ∞

−∞
λπ

(
r0 exp(

z ln 10

10η
)

)2
1

σ
√

2π
exp(− z2

2σ2
)dz − φ(τs)

= 2λπr2
0 exp

(
(σ ln 10)2

50η2

)
− φ(τs). (8)

Further, there is a non-zero probability that a node is

connected to an infectious node in non-consecutive transmis-

sions, which requires a further non-trivial analysis. Therefore,

we report the upper bound of R0 in Eq. 6.

The impact of the clustering factor on the effective node

degree is illustrated in Fig. 2, where the vertical axis shows

the ratio
(β−1)φ(τs)

R0
, with τr taking a constant value 0 and R0

being calculated using Eq. 6. It is clear that the clustering

factor decreases (hence R0 increases) when either τs or σ
increases. On the other hand, an increase in τs can cause

an increase in the information propagation delay, which is

studied in the next sub-section.
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τs=10, σ=4

τs=60, σ=4

Fig. 2. An illustration of the impact of the clustering factor on the effective

node degree, the curves show the ratio
(β−1)φ(τs)

R0
.

D. Information propagation delay

Lemma 4. Consider a network G, whose effective node
degree is R0. A piece of information is broadcast from an
arbitrary node at time t = 0 using the opportunistic broadcast
scheme. Let T (z) be the expected time when the fraction of
informed nodes reaches z, for 0 < z ≤ 1. Then, for N = λL2,

T (z) ≥ τs�1 + ln Nz

ln(1 + R0

β
)
�. (9)

Proof: Recall that each infectious node has β trans-

missions separating by a random time interval τs + τr. In

this proof, we obtain a lower bound on the delay T (z)

by considering that the time between any two consecutive

transmissions is τs and the infectious nodes never recover.
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Then, all infectious nodes transmit simultaneously at time

τs, 2τs, 3τs, ....
Further, recall that R0 is the expected number of nodes

(including both informed and uninformed nodes) that have

been directly connected to an infectious node during all its

transmissions. However, some of the nodes connected to an

infectious node may have already received the information

from other infectious nodes. It follows that the expected

number of new infectious nodes created by each infectious

node at each time slot is not larger than R0/β � q.

Let ak be the total number of infectious nodes at time kτs,

for k ≥ 0. There holds ak ≤ ak−1+ak−1q = ak−1(1+q). Because

a0 = 1, it can be shown that ak ≤ (1 + q)k. Then

T (z) ≥ τs arg max
k

(ak ≤ Nz) (10)

≥ τs arg max
k

(
(1 +

R0

β
)k ≤ Nz

)
(11)

= τs�1 + ln Nz

ln(1 + R0

β
)
�. (12)

V. Simulation results

In this section, we report on simulations to verify the

accuracy of analytical results. The simulations are conducted

using a MANET simulator written in C++. Nodes are de-

ployed on a torus (0, 800]2 following a Poisson process with

intensity λ = 0.002. The nodal speed V is set to 10m/s

(typical vehicle moving speed [13]) and τr is considered to be

uniformly chosen from [0, 1]. Other distributions of τr show

a similar trend hence not shown here.

Fig. 3 shows the percolation probability and the expected

fraction of informed nodes. It can be seen that both metrics

improve as either of τs or σ increases, owing to the reduction

of the clustering factor. Our analytical bounds are close to the

simulation results as shown in Fig. 3(a), while the discrepancy

in Fig. 3(b) is caused by the approximations used in deriving

the fraction of informed nodes in [2], which requires another

non-trivial analysis to correct.
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Fig. 3. Analytical (Ana) and simulation (Sim) results for percolation
probability and the expected fraction of informed nodes, using different
network parameters. Analytical results are obtained by combining Theorem
1, 2 and 3. Simulation result for percolation probability shows the probability
of having at least 10% informed nodes in steady state.

Fig. 4 shows the time delay for a piece of information to

be received by 50% of nodes. It can be seen that the length

of the sleeping time interval has a great impact on the delay

and our analytical result provides a valid lower bound.

Further, Fig. 3 and Fig. 4 suggest that shadowing effects

benefit the information propagation process in terms of per-

colation probability, expected fraction of informed nodes and

time delay, because an increase in σ leads to an increase in
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Fig. 4. The delay for a piece of information to be received by 50% of
nodes. For the sake of comparison, the value of τs is kept constant while
the value of r0 being increased in the first six curves.

R0 as shown by Theorem 3. This is in sharp contrast with

previous conclusions, e.g. [4], because traditional routing

algorithms like AODV need to establish a route before

sending data, whilst the route is unstable due to dynamic

topology and channel randomness.

VI. Conclusion and future work

This paper proposed a spectrum and energy efficient op-

portunistic broadcast scheme for MANETs subject to channel

randomness. The proposed scheme is decentralized and sim-

ple to implement. Further, the performance of the network

using the proposed scheme, measured by the percolation

probability, expected fraction of informed nodes and time

delay, is analytically studied. The accuracy of the analytical

results was verified by simulations.

In the future, we are going to consider the effects of

fast fading such as the Rayleigh fading [9]. Further, we are

interested in investigating the broadcast scheme where the

distribution of τr is determined by certain CSMA protocols.

References

[1] A. Vahdat and D. Becker, “Epidemic routing for partially-connected
ad hoc networks,” Duke Tech Report CS-2000-06, 2000.

[2] Z. Zhang, G. Mao, and B. D. O. Anderson, “On the information
propagation in mobile ad-hoc networks using epidemic routing,” in
Proceedings IEEE GLOBECOM, 2011, pp. 1–6.

[3] W. C. Ao and K.-C. Chen, “Percolation-based connectivity of multiple
cooperative cognitive radio ad hoc networks,” in Proceedings IEEE
GLOBECOM, 2011, pp. 1–6.

[4] L. Qin and T. Kunz, “On-demand routing in manets: The impact
of a realistic physical layer model,” Ad-Hoc, Mobile, and Wireless
Networks, vol. 2865, pp. 37–48, 2003.

[5] M. Khabbazian and V. K. Bhargava, “Efficient broadcasting in mobile
ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 8,
no. 2, pp. 231 – 245, 2009.

[6] P. Chen and K. Chen, “Information epidemics in complex networks
with opportunistic links and dynamic topology,” in IEEE GLOBECOM,
2010, pp. 1–6.

[7] R. Friedman and A. C. Viana, “Gossiping on manets: The beauty and
the beast,” ACM Operating Systems Review, vol. 41, no. 5, pp. 67–74,
2007.

[8] J. Wu, S. Yang, and F. Dai, “Logarithmic store-carry-forward routing
in mobile ad hoc networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 18, no. 6, pp. 735 – 748, 2007.

[9] T. S. Rappaport, Wireless Communications: Principles and Practice,
2nd Edition. Prentice Hall, 2001.

[10] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models
for ad hoc network research,” Wireless Communications and Mobile
Computing, vol. 2, no. 5, pp. 483 – 502, 2002.

[11] P. Nain, D. Towsley, B. Liu, and Z. Liu, “Properties of random direction
models,” in Proceedings IEEE INFOCOM, vol. 3, 2005, pp. 1897–
1907.

[12] Z. Zhang, “Mobile ad-hoc networks,” 2012. [Online]. Available:
http://zijie.net/manet/

[13] M. Rudack, M. Meincke, and M. Lott, “On the dynamics of ad hoc
networks for inter vehicle communications (IVC),” in Proceedings
ICWN, 2002.

[14] Z. Zhang, S. C. Ng, G. Mao, and B. D. O. Anderson, “On the
k-hop partial connectivity in finite wireless multi-hop networks,” in
Proceedings IEEE ICC, 2011, pp. 1–5.

322


