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Abstract—This paper investigates the information dissemina-
tion process in wireless communication networks formed by
vehicles. As vehicles are moving constantly, a vehicular ad-hoc
network exhibits a highly-dynamic network topology and a fast-
changing radio environment. These distinguishing characteristics
result in random and unreliable wireless connections between
vehicles. Consequently, vehicles need to work cooperatively to
disseminate a piece of information to the destination. This paper
analyses cooperative information forwarding schemes where
each vehicle determines whether or not to forward a received
packet in a decentralized manner, without the costly or even
impractical demand for the knowledge of network topology.
Considering a generic wireless connection model incorporating
wireless channel randomness, analytical results are derived for
the probability of successful delivery and the expected number
of packet forwardings. Moreover, analysis is conducted on
the optimal information forwarding scheme that meets a pre-
designated probability of successful delivery objective using the
minimum number of packet forwardings.

Index Terms—vehicular ad-hoc network; cooperative forward-
ing; channel randomness; random connection model

I. Introduction

With recent developments of telecommunication technolo-
gies, vehicle-to-vehicle communication has been taking an
increasingly important role in improving safety, productivity
and environmental performance of our transport system [1].
This paper considers vehicular ad-hoc networks (VANETs)
formed by vehicles travelling on a highway and investigates
the information dissemination process using cooperative in-
formation forwarding schemes. Information dissemination in
VANETs is a challenging task mainly due to the highly
dynamic wireless connections between vehicles, which are
attributable to two key factors: dynamic network topology
and wireless channel randomness.

The network topology of a VANET exhibits high dynamics
as vehicles are constantly moving. In particular, the distances
between vehicles are changing from time to time, where a
wireless connection between two vehicles only appears when
vehicles move close to each other and disappears when two
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vehicles move far apart. Fast changing network topology
makes traditional routing mechanisms (e.g. AODV [2] or
DSR [3]) ineffective, because they require time to learn the
network topology to determine all relays connecting source
and destination before any actual data transmission.

In addition to the fast-changing network topology, wireless
channel randomness is another key factor affecting the wire-
less connections between vehicles. When a vehicle moves
along the road, its surrounding radio environment varies as
it passes by buildings and trees. Therefore, the condition of
the wireless channel between two vehicles can vary from
time to time even when their distance remains unchanged.
Moreover, it is shown by Boban et al. [4] that nearby vehicles
moving on the road can also significantly change the condition
of wireless channel between two vehicles. Consequently, the
information dissemination schemes for VANETs need to take
channel randomness into account.

Though wireless communication brings a number of chal-
lenges, it also comes with potential benefits: a wireless
transmission is naturally a broadcast transmission. When a
vehicle transmits a packet, there can be more than one
vehicle who receive the packet successfully. These vehicles
can then forward the packet again, resulting in multiple
information forwarding paths as illustrated in Fig. 1. Multiple
paths of information forwarding can significantly improve the
reliability of information dissemination compared with that
using a single path, when the cost (in terms of the number of
forwardings) is carefully controlled.

Fig. 1. An illustration of an information dissemination process from a source
S to a destination D. A curve between two nodes represents a successful
transmission of a packet. For example, Nodes B and C, at distance x1 and x2
from node S respectively, receive the packet from node S at the same time.
There are three information forwarding paths: S BCD, S CD and S D.

This paper investigates a cooperative information forward-
ing scheme for VANETs, where vehicles work cooperatively
to forward a piece of information to its destination. Further,
each vehicle determines whether or not to forward a received
packet in a decentralized manner without the knowledge of
network topology, which can be costly or even impractical to
obtain in VANETs taking into account channel randomness
and highly dynamic network topology. The main contributions
of this paper include: 1) a branching process model for
the multiple-path information dissemination process using a



2

distributed cooperative forwarding scheme is established for
VANETs under a generic wireless connection model; 2) an an-
alytical result on the expected number of packet forwardings
required to disseminate a piece of information to a destination
at a given distance from the source is derived; 3) an upper
bound on the probability of successful delivery is derived;
4) guidelines are provided on the design of the optimal
forwarding scheme to meet a pre-designated performance
objective on the probability of successful delivery using the
minimum number of packet forwardings.

The rest of this paper is organized as follows: Section II
reviews related work. Section III introduces the system model,
including the wireless connection model and the cooperative
forwarding scheme. Performance analysis on the information
dissemination process is presented in Section IV. Section V
validates the analysis using simulations. Section VI concludes
this paper and discusses future research directions.

II. Related work

Motivated by the great potential in improving safety and
productivity of road transport, there are an increasing number
of studies on wireless communication between vehicles [1].
Due to the highly-dynamic network topology that distin-
guishes VANETs from traditional static networks where nodes
do not move, research in this area has mainly focused on
distributed information forwarding schemes [5]–[7].

A popular category of distributed information forwarding
schemes, for either unicast, multicast or broadcast, is the
store-carry-forward scheme [8], using which every vehicle
carries its received packets while moving, and forwards them
to other vehicles coming into its vicinity. The store-carry-
forward approach is particularly suitable for delay-tolerant
information dissemination in sparse VANETs. However in a
dense network, this approach becomes less efficient and can
even cause a broadcast storm problem [9]. In view of this,
a number of probabilistic information forwarding schemes
are proposed, where two main categories are the delay-based
forwarding and the probability-based forwarding schemes.

Using a delay-based forwarding approach, after a packet
is transmitted by a vehicle, the vehicles receiving this packet
wait different amounts of time before relaying the packet. A
well-known scheme in this category is proposed by Korkmaz
et al. [10], where the key idea is to maximise the packet
forwarding progress (viz. the distance between adjacent re-
lays) by letting each vehicle waits an amount of time that
is a decreasing function of the source-relay distance (viz. the
distance between the relay and the source). The studies in this
category [5], [10] usually assumed a simple wireless channel
model where once a vehicle (i.e. the one with the shortest
waiting time) transmits a packet, all its neighbours can hear
the transmission and stop forwarding the same packet, so that
the broadcast storm problem can be avoid.

Using probability-based forwarding approaches, each ve-
hicle is assigned with a certain probability to forward its
received packet. While the simplest protocol uses a fixed value
for the forwarding probability [7], usually the forwarding
probability of each relay is assigned as an increasing function
of the transmitter-relay distance (viz. the distance between a
relay and its corresponding transmitter from which the packet
is received) [5], [9], [11]. In particular, Wisitpongphan et
al. [9] considered a probability-based cooperative information

broadcast scheme where the forwarding probability of each
relay is assigned as p(z) = z/r0 where r0 is the transmission
range and z is the transmitter-relay distance. Through simula-
tions, they showed that their broadcast scheme can guarantee
100% reachability (viz. the probability that the information
is received by all the vehicles within a given geographical
area) while achieving up to 70% reduction in the number of
packet transmissions compared with the traditional broadcast
approach where each vehicle keeps broadcasting until all its
neighbours receive the packet.

A recent work of Panichpapiboon and Cheng [12] assigned
the forwarding probability of each relay as p(z) = (1 −
F(r0 − z))1/c, where c is a shaping parameter, r0 is the
transmission range, z is the transmitter-relay distance (viz. the
distance between the relay and its corresponding transmitter
from which the packet is received) and 1 − F(r0 − z) is
the probability that there is no vehicle to the right of the
relay within the transmission range of the transmitter. Using
simulations driven by real traffic traces, they showed that their
scheme, taking into account not only the distance z but also
the vehicular density (in the calculation of F(r0−z)), can guar-
antee 100% reachability while further reducing the number
of forwardings compared with the schemes (e.g. [9]) where
the forwarding probability is a linear function of transmitter-
receiver distance z. Yet there is limited understanding on the
optimal design of the forwarding probability that achieves
a pre-designated performance objective with the minimum
number of forwardings.

Further, many existing work (e.g. [8]–[12]) assumed the
unit disk connection model (UDM), under which two vehicles
can directly communicate with each other if their distance is
not larger than the transmission range r0. As introduced in
Section I, the wireless connection between vehicles can be
affected by a number of random factors, which are taking
into account in this paper using a generic connection model
to be described in the next section, hence the analysis in this
paper can be more relevant to real world scenarios.

III. System model

A. Network model

Consider a 1D VANET where vehicles follow a homo-
geneous Poisson distribution with intensity ρ [7], [12]. As
commonly done is this field, movements of vehicles are not
considered because packet forwarding time is in milliseconds,
during which the movements of vehicles are negligible [7].

A generic wireless connection model is considered, where
the probability that a receiver separated by distance z from the
transmitter receives a transmission successfully is given by a
connection function g(z), independent of other transmissions.
Taking different forms, the connection function g(z) can
include a number of widely-used wireless connection models
as special cases. For example, under the UDM, there is

g(z) =

1, for 0 < z ≤ r0

0, for z > r0
, (1)

where r0 is the transmission range. More specifically, under
the UDM, the received signal strength (RSS) at a receiver
separated by distance z from the transmitter is Pu(z) = CPtz−η,
where C is a constant, Pt is the transmission power common
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to all vehicles and η is the path loss exponent [13]. A transmis-
sion is successful if the RSS exceeds a given threshold Pmin.
Consequently, the transmission range (r0) under UDM is the
solution to Pmin = CPtr

−η
0 . Moreover, under the log-normal

shadowing model (LSM) [13], the RSS attenuation (in dB)
follows a Gaussian distribution: 10 log10(Pl(z)/CPtz−η) ∼ G,
where Pl(z) is the RSS under LSM and G is a zero-mean
Gaussian random variable with standard deviation σ. When
σ = 0, the LSM reduces to the UDM. It has been shown in
[14] that under LSM,

g(z) = Pr(Pl(z) ≥ Pmin) =
1
2

1 − erf(
10η log10( z

r0
)

√
2σ2

)
 . (2)

Further, taking other forms, channel fading can also be
incorporated into the connection function as shown in [14].

Though we consider a generic connection function g(z),
there are two reasonable constraints on g(z): 1) it is a mono-
tone non-increasing function of z and 2) limz→∞ g(z) = 0.

B. Cooperative forwarding scheme

As illustrated in Fig. 1, consider a source S located at the
origin of the x axis. The source transmits a packet containing a
piece of information (e.g. an advertisement or a traffic update
[12]) intended to a destination located at x = D.

If a vehicle at position x2 receives a packet from a trans-
mitter (either the source or a relay vehicle) at position x1 for
x1 < x2 < D, which happens with probability g(x2 − x1), then
the vehicle at position x2 forwards the packet with probability
p(x2 − x1), independent of other vehicles. Hereafter, the
vehicles that receive the information and choose to forward
the information are referred to as the relays. We consider that
the forwarding probability p(z) is a function of the transmitter-
relay distance z because previous research (e.g. [5], [9], [10],
[12]) showed that the transmitter-relay distance is a key metric
determining the performance of the information dissemination
process. Further, note that our analysis on the optimal design
of p(z), shown in the next section, takes into account not only
the transmitter-relay distance but also the connection function
g(z) and density ρ.

Further, it is assumed that a proper MAC mechanism (e.g.
CSMA) is employed to avoid collision, so that we can focus
on the design of the forwarding probability p(z). Moreover,
the transmitter-relay distance z can be calculated by each
relay using its own position, provided by GPS [9] or other
localization techniques [15], and the position of transmitter
carried in the packet header.

As we allow multiple information forwarding paths, there
can be more than one copy of the same information propa-
gating in the network. Initially, the source node transmits a
single packet containing the information, where the time-to-
live (TTL) [12] of the packet is set to a pre-designated positive
integer km. The TTL value of a packet decreases by one each
time the packet is forwarded. In the example shown in Fig.
1, node D receives three packets containing the information
from node S forwarded via three paths S BCD, S CD and S D,
where the TTL values of these packets are km − 2, km − 1 and
km respectively.

The dissemination process of an information stops natu-
rally when there is no relay in the network (recall that the
aforementioned constraint x1 < x2 < D means that only the
vehicles located between a transmitter and the destination can

be a relay) or when the TTL values of all packets containing
the information decrease to 0. Note that the TTL only limits
the maximum path length (viz. the number of forwardings
along a single path), while the total number of forwardings
along all paths needs to be analysed separately.

IV. Analysis of the information dissemination process

In this section, a branching process model is established
for the information dissemination process. Then the analytical
results on the probability of successful delivery and the total
number of forwardings are derived. Based on these results,
Section IV-B investigates the optimal forwarding probability
p(z) that meets a pre-designated probability of successful
delivery objective using the minimum number of forwardings.

A. Analysis under generic g(z) and p(z)

The main results of this subsection are summarised in the
following two theorems, whose proofs are provided later.

Theorem 1. Denote by M(D) the expected total number
of forwardings of an information along all paths before the
information dissemination process stops. There holds

M(D) =

km∑
k=1

∫ D

0

k-fold convolution︷           ︸︸           ︷
(ζ ∗ ζ ∗ ... ∗ ζ)(x)dx, (3)

where ζ(z) , ρp(z)g(z) and km is the maximum path length
(set by the TTL).

Theorem 2. Denote by φ(D) the probability that the infor-
mation sent from a source node is successfully received by
the destination at distance D from the source. There holds

φ(D) ≤ 1 − (1 − g(D)) exp

−
km∑

k=1

(

k-fold convolution︷         ︸︸         ︷
ζ ∗ ζ ∗ ... ∗ ζ ∗g)(D)

 , (4)

where ζ(z) , ρp(z)g(z).

Proof of Theorem 1. We first construct a branching process
model for the relays in the information dissemination process.
The root, i.e. the 0th generation, of the branching process is
the source node. The children of a node (say node B) are
the nodes that receive the packet directly from node B and
choose to forward the packet. Note that as we allow multiple
forwarding paths, multiple nodes in the branching process can
represent the same vehicle. In the example shown in Fig. 1,
the children of both vehicles B and S include the vehicle C.
Hereafter, the packets transmitted by the kth generation nodes
are called the kth generation packets.

Denote by ψk(x) the expected number of the kth generation
packets forwarded by a given kth generation node at distance
x ∈ (0,D) from the source. Then it is straightforward that

ψ1(x) = g(x)p(x). (5)

Next we consider the 2nd generation. Due to the inde-
pendence of the packet transmissions between every pair of
vehicles and the fact that each vehicle chooses its forwarding
probability independently of other vehicles, the 1st generation
nodes follow an inhomogeneous Poisson point process with
intensity ζ(x) , ρp(x)g(x). Given that there is a 1st generation
node at distance h from the source, a node at x transmits
a 2nd generation packet if it receives a packet from the 1st
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generation node (with probability g(x − h)) and it chooses to
forward (with probability p(x − h)). Then there holds

ψ2(x) =

∫ x

0
p(x − h)g(x − h)ζ(h)dh =

1
ρ

(ζ ∗ ζ)(x). (6)

Similarly, consider that the 1st and the 2nd generation nodes
are at distance h and z from the source respectively. Then the
expected number of the 3rd generation packets forwarded by
a given node at x ∈ (0,D) is

ψ3(x) =

∫ x

0

∫ x

h
p(x − z)g(x − z)ζ(z − h)ζ(h)dzdh

=
1
ρ

(ζ ∗ ζ ∗ ζ)(x). (7)

Consequently, it can be shown that

ψk(x) =
1
ρ

k-fold convolution︷           ︸︸           ︷
(ζ ∗ ζ ∗ ... ∗ ζ)(x). (8)

Finally, the expected total number of forwardings made by
all relays between the source and the destination is

M(D) =

km∑
k=1

∫ D

0
ψk(x)ρdx =

km∑
k=1

∫ D

0

k-fold convolution︷           ︸︸           ︷
(ζ ∗ ζ ∗ ... ∗ ζ)(x)dx. (9)

�

Before going into the next proof, let Fig. 2 illustrate
the forwarding process, which shows the simulation (whose
setting is described in Section V) and analytical results (given
by Eq. 8) of the expected number of forwardings in each
generation, under UDM and a constant forwarding probability
p(z) = pc. It can be seen that the analytical result matches well
with the simulation result.
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Fig. 2. Simulation (Sim) and analytical (Ana) results on the expected number
of the kth generation packets forwarded by vehicles located at distance x from
the source node.

Next we study the probability of successful delivery.

Proof of Theorem 2. Construct a branching process for the
relays in the same way as that in the proof of Theorem 1.
Denote by φk(D) the probability that the destination at dis-
tance D from the source receives at least one kth generation
packet. It is clear that when k = 0, there is φ0(D) = g(D).

Consider a differential interval ∆x1 at distance x1 from the
source. Due to Poisson distribution of vehicles, the probability
that there is a 1st generation node in the interval ∆x1 is
ρp(x1)g(x1)∆x1 = ζ(x1)∆x1. Consider another differential
interval ∆x2 at distance x2 from the source. Let Ξ1 (resp.
Ξ2) be the event that the destination at D does not receive
the 1st generation packet transmitted by the node at ∆x1

(resp. ∆x2). When ∆x1 and ∆x2 are geometrically close to
each other, the events Ξ1 and Ξ2 can be positively correlated,
i.e. conditioned on the occurrence of the event Ξ1, the event
Ξ2 is more likely to occur and vice versa. Hence there is
Pr(Ξ1 ∩Ξ2) ≥ (1− g(D− x1)ζ(x1)∆x1)(1− g(D− x2)ζ(x2)∆x2).
This is known as the spatial correlation problem [14], which
may occur in some cases depending on the property of g(z).
The impact of the spatial correlation problem on the analysis
is discussed further in Section V.

Considering all differential intervals between the source and
the destination at D, there is

φ1(D) ≤ 1 − lim
∆x1→0

∏
∆x1∈(0,D)

(1 − g(D − x1)ζ(x1)∆x1) (10)

= 1 − lim
∆x1→0

exp

 ∑
∆x1∈(0,D)

−g(D − x1)ζ(x1)∆x1


= 1 − exp

(∫ D

0
−g(D − x1)ζ(x1)dx1

)
= 1 − exp (−(ζ ∗ g)(D)) .

Through a similar analysis, it can be shown that for k ≥ 1,

φk(D) ≤ 1 − lim
∆x1→0

... lim
∆xk→0

∏
∆x1∈(0,D)

...
∏

∆xk∈(xk−1,D)

(1 − g(D − xk)

ζ(xk − xk−1)...ζ(x1 − 0)∆xk...∆x1) (11)

= 1 − exp
(∫ D

0

∫ D

x1

...

∫ D

xk−1

−g(D − xk)

ζ(xk − xk−1)...ζ(x2 − x1)ζ(x1 − 0)dxk...dx2dx1)

= 1 − exp

−(

k-fold convolution︷          ︸︸          ︷
ζ ∗ ζ ∗ ... ∗ ζ) ∗g)(D)

 .
Finally, the probability of successful delivery φ(D) is equal

to the probability that the destination receives at least one of
the kth generation packets for k = {0, 1, ..., km}. Then there is

φ(D) ≤ 1 −
km∏

k=0

(1 − φk(D)) (12)

≤ 1 − (1 − g(D))
km∏

k=1

exp

−(

k-fold convolution︷         ︸︸         ︷
ζ ∗ ζ ∗ ... ∗ ζ ∗g)(D)


= 1 − (1 − g(D)) exp

− km∑
k=1

(

k-fold convolution︷         ︸︸         ︷
ζ ∗ ζ ∗ ... ∗ ζ ∗g)(D)

 .
where the first inequality is again due to the spatial correlation
problem, i.e. due to a finite transmission range determined by
certain forms of g(z), the event that a node does not receive
the information in the kth generation is positively correlated
to the event that the node does not receive the information in
the ith generation for i , k. �

B. Optimization

Based on the above analysis, this subsection presents a
conjecture on the optimal design of the forwarding probability
that meets a pre-designated probability of successful delivery
objective using the minimum number of forwardings, which
is formulated as an optimization problem as follows

Minimise
p(z)

M(D)

Subject to φ(D) = Pt,
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where Pt ∈ [0, 1] is the pre-designated probability of success-
ful delivery objective. Note that it can be seen later that the
optimization result using the constraint φ(D) ≥ Pt is the same
as that using φ(D) = Pt.

The following analysis is based on the upper bound given
in Theorem 2. Note that it is an upper bound only due to the
spatial correlation problem arisen in some cases depending on
g(z). Further, it has been shown in [14], and can be seen later
in Section V, that the spatial correlation problem becomes
less notable in the presence of channel randomness.

Seeing that the k-fold convolution is the common term in
both φ(D) and M(D), we first define

ηk(x) ,

k-fold convolution︷           ︸︸           ︷
(ζ ∗ ζ ∗ ... ∗ ζ)(x). (13)

Then perform functional derivative [16] onM(D) given by
Theorem 1. Using the delta function δ(.) as a test function,
for 0 < y < D there holds

∂M(D)
∂ηk(y)

=
∂

∂ηk(y)

km∑
k=1

∫ D

0
ηk(x)dx (14)

= lim
ε→0

∑km
k=1

∫ D
0 ηk(x) + εδ(x − y)dx −

∑km
k=1

∫ D
0 ηk(x)dx

ε

= lim
ε→0

∑km
k=1

∫ D
0 εδ(x − y)dx

ε
= lim

ε→0

kmε

ε
= km.

Denote by φu(D) an upper bound on the probability of
successful delivery, Then using Theorem 2, there is

φu(D)=1 − (1 − g(D)) exp

− km∑
k=1

∫ D

0
ηk(x)g(D − x)dx

. (15)

Then perform functional derivative on φu(D). There is

∂φu(D)
∂ηk(y)

= (1 − g(D)) (16)

lim
ε→0


− exp

(
−

∑km
k=1

∫ D
0 (ηk(x) + εδ(x − y))g(D − x)dx

)
ε

+

exp
(
−

∑km
k=1

∫ D
0 ηk(x)g(D − x)dx

)
ε


= (1 − g(D)) exp

− km∑
k=1

∫ D

0
ηk(x)g(D − x)dx


lim
ε→0

− exp
(
−

∑km
k=1

∫ D
0 εδ(x − y)g(D − x)dx

)
+ 1

ε

= (1 − g(D)) exp

− km∑
k=1

∫ D

0
ηk(x)g(D − x)dx


lim
ε→0

− exp (−kmεg(D − y)) + 1
ε

= (1 − g(D)) exp

− km∑
k=1

∫ D

0
ηk(x)g(D − x)dx

 kmg(D − y).

The Lagrangian of our optimization problem becomes

L(η(x), λ) =M(D) + λ (Pt − φu(D)) . (17)

The K.K.T. conditions are: λ ≥ 0,
∂L(ζ(x), λ)
∂η(x)

= km − λ(1 − g(D))

× exp

− km∑
k=1

∫ D

0
ηk(x)g(D − x)dx

 kmg(D − y) = 0, (18)

1 − (1 − g(D)) exp

− km∑
k=1

∫ D

0
ηk(x)g(D − x)dx

 ≥ Pt, (19)

λ

Pt − 1 + (1 − g(D)) exp

− km∑
k=1

∫ D

0
ηk(x)g(D − x)dx


 = 0.

(20)

According to the condition in Eq. 18, there is λ , 0.
Therefore, the constraints φ(D) = Pt and φ(D) ≥ Pt give
the same optimization result. Then from Eq. 20, there is

1 − (1 − g(D)) exp

− km∑
k=1

∫ D

0
ηk(x)g(D − x)dx

 = Pt. (21)

Substitute Eq. 21 back to Eq. 18. There is

km − λ(1 − Pt)kmg(D − y) = 0. (22)

This condition is feasible for λ > 0 because (1 − Pt)kmg(D −
y) > 0. Finally, from Eq. 21, the objective function is
minimised when

km∑
k=1

∫ D

0
ηk(x)g(D − x)dx = ln

(
(1 − g(D))

1 − Pt

)
. (23)

Note that Eq. 23 only gives a requirement on ηk(x). To
fulfil Eq. 23 while minimising M(D) =

∑km
k=1

∫ D
0 ηk(x)dx, the

function ηk(x) needs to have a large value when x is close to
D, because g(z) is a non-increasing function of z. Moreover,
recall that ηk(x) is the k-fold convolution of ζ(z) = ρg(z)p(z).
Consequently the function ζ(z) needs a large mean value. This
conclusion justifies the previous simulation studies showing
that the number of forwardings can be reduced by assigning
a larger forwarding probability to a node farther apart from
the transmitter [5], [9], [11].
Remark 1. In summary, to achieve a pre-designated proba-
bility of successful delivery Pt using the minimum number
of forwardings, one should first calculate the requirement on
the size of the area under the curve of ηk(x) using Eq. 23.
Then based on the wireless connection function g(z), design
the forwarding probability p(z) in the way that maximises the
mean value of ζ(z). Further discussions on the optimal design
of p(z) are provided in the next section.

V. Simulation

This section reports on simulations to validate the analytical
results. The Monte Carlo simulations are conducted in a
VANET simulator written in C++. Nodes are deployed on
a 1D axis following a homogeneous Poisson process with
intensity ρ varying from 0.005 to 0.02 veh/m. The UDM and
the LSM are used as two typical wireless connection models,
where the transmission range under UDM is r0 = 250 ∼ 500m
[7] and the parameters of LSM are η = 2 and σ = 4 [13].

We first use a typical forwarding probability p(z) =

min{pc
z
r0
, 1}, which is an increasing function of z, where

pc ∈ (0, 1) is a tuning parameter. The upper bound on the
probability of successful delivery is shown in Fig. 3, plotted
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together with simulation results for comparison. It can be
seen that the gap between simulation and analytical result is
smaller under LSM compared with that under UDM; also the
gap is smaller when pc is smaller. This is because randomness
reduces the spatial correlation problem introduced in the proof
of Theorem 2. Overall, the analytical result is able to capture
the impacts of network parameters (i.e. ρ, g(z) and p(z)) on
the information dissemination process.

Further, it can be seen in Fig. 3 that using the same setting,
the network under LSM has a higher probability of successful
delivery than that under UDM. This coincides with previous
observations [14] that shadowing effects are beneficial to the
connectivity of the networks adopting distributed information
forwarding schemes.
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Fig. 3. Simulation (Sim) results and analytical (Ana) upper bound on the
probability of successful delivery.

Fig. 4 compares the probability of successful delivery under
UDM using four different forwarding probability functions as
depicted in Fig. 5. Note that these four functions have the
same size of the area under the curve, which means that their
convolution results (i.e. p(z) ∗ p(z)) also have the same area
size under the curve. Therefore, these four functions results in
the same expected number of forwarding in each generation.
It is interesting to note that Fig. 4 confirms our conjecture
given in Remark 1 that the optimal design of p(z) (introduced
in Section IV-B) should have the largest mean value, which
is a rectangular function (see case 4 in Fig. 5) rather than a
linear function or an exponential function of z (considered in
related studies (e.g. [5], [9], [11])).
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Fig. 4. Simulation results of the probability of successful delivery using 4
different forwarding probability functions p(z) as depicted in Fig. 5.

VI. Conclusion and future work

This paper investigated cooperative information forwarding
schemes for VANETs. Theoretical models were established
for the information dissemination process under a generic
wireless connection model and a generic forwarding probabil-
ity function. Analytical results on the probability of successful
delivery and the total number of forwardings are derived.
Further, a conjecture on the optimal information forwarding
scheme is provided.
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Fig. 5. Four different forwarding probability function for z ∈ [0, r0]: Case
1 is p(z) = pc(1 − z

r0
); case 2 is p(z) = pcz/r0 when 0 ≤ z ≤ r0/2 and

p(z) = pc − 2pc(z − r0/2)/r0 when r0/2 ≤ z ≤ r0; case 3 is p(z) = pc
z
r0

and
case 4 is p(z) = pc when r0/2 ≤ z ≤ r0, otherwise p(z) = 0. Note that under
UDM where g(z) is given by Eq. 1 with r0 = 500, there holds g(z)p(z) = p(z)
for either one of these functions.

A complete proof to the conjecture on the optimal for-
warding scheme needs to be provided in a future work,
which requires a non-trivial analysis on the impact of the
spatial correlation problem on the information dissemination
process. Further, network coding techniques can be employed
to reduce the redundancy in packet forwardings, where each
relay combines its own packet and its received packet into a
coded packet and forwards to other vehicles.
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