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Abstract—Neighbor discovery, providing neighbor informa-
tion by broadcasting discovery message, is a promising solution
for cooperative perception of intelligent vehicles. However, a
frequent discovery sacrifices due to the highly dynamic mobility
and channel randomness of vehicle environments, which induces
a superabundant overhead. In this paper, we propose a new
framework for cooperative perception of intelligent vehicles by
novelly introducing an improved neighbor discovery. Consider-
ing the highly mobility and channel randomness of intelligent
vehicle environments, we first investigate the inherent issue of
neighbor discovery in the environments through modeling and
analyzing the performance of the classic neighbor discovery
method. Specifically, a closed-form expression of the key perfor-
mance parameter, i.e., the hitting probability, respecting to the
discovery interval, network mobility and channel randomness,
is derived for the improved neighbor discovery, which enables
the discovery method to control the discovery accuracy and
overhead. Motivated by the analysis, we then discuss the process
of cooperative perception using the improved neighbor discovery.
At last, simulation results in three common channel conditions
verify the accuracy of the analysis.

I. INTRODUCTION

More than 1.2 million people die annually and up to
50 million injuries occur on the world’s road. $160 billion
are costed by traffic congestion in the U.S. every year. In
addition, 31% of the global CO2 emissions were caused by
vehicles tailpipes [1]. The growing threats from the traffic
crash, roadways congestion and vehicle pollution are driving
transportation system towards more efficient, eco-friendly and
intelligent. Enhanced with perception, reasoning and actuating
devices, intelligent vehicles enable the automation of driving
tasks such as safe lane following, obstacle avoidance, avoiding
dangerous situations, and determining the optimal route, and
makes motoring safer, and more convenient and efficient,
which is one of the most helpful solution of Intelligent
Transportation System (ITS) [2].

As the basic and essential ability of intelligent vehicles,
driving environment perception, providing information on
state of the vehicle (i.e., position and speed) and surrounding
(i.e., range and vision), is executed by sensors, radars and
cameras, which relies on the sensing devices. However, the
performance of perception cannot guaranteed due to the heavy
interference and statistical noise in transportation system [3].
Furthermore, the high price of some special devices, such as
the laser radar also impedes the development of intelligent

vehicles. A new low price and efficient assist sensing method
is required, while neighbor discovery is a promising method.

The neighbor discovery scheme denotes the process of
discovering all neighbors in a device’s communication range,
which is widely used in many peer-to-peer communications
[4], [5]. Here, we novelly propose to use neighbor discovery
for driving environment perception of intelligent vehicles.
Following a neighbor discovery scheme, an intelligent vehi-
cle broadcasts a special discovery message every discovery
interval. Meaningful Information of the vehicle including the
location, speed and time are contained in the message [6].
Through receiving and exacting information of neighbors,
vehicles can cognize the neighbor information and realize the
driving environment perception cooperatively.

The scheme is initially conceived as a means to deal with
energy issues at deployment in wireless sensor networks,
where the main objective is to acquire information about
network topology for subsequent communication [7]. While
applying in vehicle networks, minimizing the discovery time
and overhead become the goal. However, it is still a challeng-
ing task due to the impact of traffic environments. Firstly, a
highly dynamic feature exists due to the rapid variation of
vehicle velocity, short lifetime of link connection and quick
change of mobile environment. Accordingly, a vehicle needs a
small discovery interval to inform its neighbors its presence in
time, which arouses a high discovery overhead. Furthermore,
mass data including the safety message, transportation status
news, and HD map shares the stringently restricted network
resource with the neighbor discovery message in intelligent
vehicles. Thus, the little the resource is used for neighbor
discovery the better the network service is, which calls for a
large discovery interval. However, the discovery time can not
be guaranteed. In addition, wireless connections are random,
time-varying and space-varying, caused by the uncertainty
of available spectrum band, shadowing and fading. This
wireless channel randomness induces a frequent changing
of the discovery performance, which calls for an channel
adaptive discovery method. In general, although neighbor
discovery is a promising solution for cooperative perception
of intelligent vehicles, it still has the contradiction of the
discovery efficiency and overhead while it is applied in vehicle
environments.

Meaningful works have been presented to address the issue
of neighbor discovery in vehicle networks. The most popular



discovery scheme is periodic method, in which the discovery
interval is constant [6]. Then, the reactive method using the
request-reply mechanism and the event-based method are
proposed for latency tolerant traffic [8]. Recently, considering
the feature of traffic, Zouina et. al [9] design the discovery
method under 802.11p frame while David et. al [10] present a
work in LTE networks. Focusing on the issue of fair, Esteban
and Pablo [11] present a series of works on discovery rate
adaption, and Lin et. al [12] make neighbor discovery using
directional antennas. However, most of the works focus on the
network mobility while impact of the channel randomness is
rarely considered.

In this paper, we address the inherent issues of neighbor dis-
covery in vehicle environments, and propose a new framework
for cooperative perception of intelligent vehicles by novelly
introducing the improved neighbor discovery into perception.
We consider a scenario that all intelligent vehicles can broad-
cast and receive discovery messages for perception. They need
discover their neighbors in time while the overhead is as low
as possible in the highly dynamic, channel randomness and
resource limited environments. Targeting at the metric of time
and overhead, we first derive a closed-form expression of
the key performance parameter, i.e., the hitting probability,
respecting to the discovery interval, network mobility and
channel randomness. Using the expression, the presented
improved neighbor discovery enables to control the discovery
accuracy and overhead. Depending on the analysis, we discuss
the process using neighbor discovery for the cooperation per-
ception of intelligent vehicles. In the end, simulation results
in three common channel conditions verify the accuracy of
the analysis. Specifically, the novelty and contributions of this
paper are summarized as follows.

1) The proposed perception framework is a low-cost, be-
cause we novelly utilize a soft method, i.e., neighbor discov-
ery, for perception without none of the expensive hardwares.

2) By a comprehensive analysis of discovery process under
vehicle environments, we give a closed-form expression which
can be utilized to address the inherent issues of neighbor
discovery in vehicle environments. Thus, our framework is
also an efficient assistant method with the improved neighbor
discovery.

The remainder of this paper is organized as follows. We de-
scribe the analytical model and problem formation in Section
II. The analysis results are introduced in Section III, while the
framework of cooperative perception is discussed in Section
IV. Then, we conduct simulations and give corresponding
results in Section V. At last, we conclude this paper.

II. SYSTEM MODEL

To address the issue of neighbor discovery in vehicle envi-
ronments, we first model the discovery process. As illustrated
in Fig.1, we consider a traffic scenario that intelligent vehicles
moving on highway. All vehicles can communicate with its
neighbor vehicles by one-hop. Then, each vehicle advertises
its existence by broadcasting its discovery message, and sense
its neighbors by receiving their message. Useful information,
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Fig. 1. Illustration of the vehicular network.

such as the location, speed and direction of the node, is
contained in the message. Thus, the cooperative perception
is achieved by the discovery process. The reciprocal of the
broadcasting frequency defines the discovery interval, marked
by I . However, a channel access delay exists influenced by
the channel access delay, which means that the time interval
between two discovery message of a node is τ = I + Ts,
where Ts is the average channel access delay. We make the
following assumptions to study neighbor discovery.

1) Mobility model: Two mutually independent traffic lanes
exit without lane changing. We ignore the road-width based
on the analysis in [13]. All nodes access the west (east) lane
following the poisson distribution with density λw (λe). We
assume that all node on the same lane have the same constant
speed, i.e., vw and ve respectively, because all drivers tend
to maintain a constant spacing with their leader car by the
car-following regime. Therefore, the distribution of the nodes
follows a homogenous poisson process.

2) Communication model: We consider three popular radio
propagation models which are the unit disk model (UDM),
lognormal model (LM) and Nakagami-m lognormal compos-
ite model (NLM). Subjecting to shadowing and fading, we
adopt the variable radio range in our analysis [14]. Assume
that two nodes can communicate iff the distance between them
is smaller than the radio range. The range is constant under
UDM, which is r0.

3) Problem definition: Without loss of generality, we
choose Nodes on the west lane as the reference and establish
a location coordinate. Then, a new metric, i.e., hitting proba-
bility, is defined by the stable ratio between the number of dis-
covered nodes and the number of real neighbors. Obviously,
it will increase with more frequent discovery. Furthermore,
the probability can reflect the performance of efficiency and
overhead of a neighbor discovery scheme. On one hand, when
the probability is smaller than 1, the notification and discovery
are not in time, because some neighbors are omitted. On
the other hand, the value of the hitting probability always
equals to 1 with an increasing discovery interval. At this time,
almost all neighbors have discovered the reference, while
abundance packets are consumed. Here, two steps are required
to investigate the neighbor discovery in vehicle environments.
• We first analyze the relation between the hitting proba-

bility and discovery interval by focusing on the periodic
discovery method subjected to the network mobility and
channel randomness. Assume that all vehicles broadcast
a discovery message every τ seconds from time 0 to
time T , where τ is constant in periodic method. We can
solve the problem by calculating the function of hitting



probability (ph) when T approaches infinity.
• Motivated by the hitting function, we try to propose our

improved neighbor discovery to balance the efficiency
and overhead of discovery. The difficulty lies in counting
the critical point where hitting probability goes to 1.

III. ON STATISTIC ANALYSIS OF CLASSIC NEIGHBOR
DISCOVERY

In this section, the target is the stable hitting probability
for periodic discovery in different channel scenarios.

A. General case

We first analyze the general case in which the radio range
is denoted by a general random variable. According to the
definition, we have lim

T→∞
E [ph] = lim

T→∞
E [ND (T )/NR (T )],

in which ND (T ) and NR (T ) are the number of discovered
nodes and the number of real neighbors during T seconds.
Then, we use Lemma 1 to turn the stable probability into a
new form.

Lemma 1. Suppose that Nodes broadcasts W discovery
packets in T seconds, where T = Wτ + δ, δ ∈ [0, τ) is a
positive integer, then, the stable hitting probability satisfies

lim
T→∞

E [ph] = lim
W→∞

E

ï
ND (Wτ)

NR (Wτ)

ò
. (1)

Proof. Neighbor discovery is a continuous discrete process,
as shown in Fig. 2. At time iτ , Nodes broadcasts a dis-
covery packet with radio range Ri, where i is a positive
integer. Obviously, we have that ND (T ) = ND (Wτ + δ) =
ND (Wτ), because Nodes broadcasts at iτ only. According
to the feature of homogeneous Poisson Process, NR (T ) =
NR (Wτ + δ) = NR (Wτ) + NR (δ). When T goes to
infinity, the stable hitting probability satisfies

lim
T→∞

E [ph] = lim
W→∞

E

ï
ND (Wτ + δ)

NR (Wτ + δ)

ò
= lim
W→∞

E

ï
ND (Wτ + δ)

NR (Wτ) +NR (δ)

ò
= lim
W→∞

E

ï
ND (Wτ)

NR (Wτ)

ò
.

(2)

The value of ND (Wτ) is difficult to calculate due to the
channel randomness. Thus, we need Lemma 2 to analyze the
function of the probability.

Lemma 2. Suppose that NG (Wτ) is the number of neighbors
receiving 0 discovery message from Nodes in Wτ seconds,
then, the stable hitting probability satisfies

lim
W→∞

E

ï
ND (Wτ)

NR (Wτ)

ò
= 1− lim

W→∞
E

ï
NG (Wτ)

NR (Wτ)

ò
, (3)

where E [NG (Wτ)/NR (Wτ)] is denoted by Eq. 8.

Proof. Due to the existing of two lanes, there are two cases
to analysis.
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Fig. 2. System model.

Firstly, we focus on the west lane where the reference node
locates. All nodes on the road have the same velocity with the
reference. Thus, nodes in range [−Rmax, Rmax] have been the
real neighbors of Nodes, as well as the discovered neighbors
of Nodes, in which Rmax = max{Ri}, i = 1, 2...W . Taken
the number of discovered neighbors and the number of real
neighbors on west lane as Nw

D (Wτ) and Nw
R (Wτ), we have

that both Nw
D (Wτ) and Nw

R (Wτ) follow a homogenous
Poisson process with density λw2Rmax.

However, nodes on east lane have a relative velocity
∆v = ve + vw respecting to Nodes. In Wτ seconds, it
seems that nodes on the lane move towards east with a
displacement ∆v (Wτ). Thus, the real neighbor of Nodes are
nodes locating in range [−RW ,W∆vτ +R1], and its number
Ne
R (T ) follows the homogenous poisson process with den-

sity λe (R1 +RW + ∆vT ). During the process, only nodes

in discrete ranges
W⋂
i=1

[(i− 1) ∆vτ −Ri, (i− 1) ∆vτ −Ri]
have received discovery message from the reference, which
are the discovered neighbors and its number is Ne

D (Wτ). At
this time, a gap with long LG exists, in which nodes receive 0
packet from Nodes. Defining the node number by NG (Wτ),
we have

lim
W→∞

E

ï
ND (Wτ)

NR (Wτ)

ò
= lim
W→∞

E

ñ
Nw
D

(Wτ) +Ne
D

(Wτ)

Nw
R

(Wτ) +Ne
R

(Wτ)

ô
= 1− lim

W→∞
E

ï
Ne
R

(Wτ)−Ne
D

(Wτ)

N
R

(Wτ)

ò
= 1− lim

W→∞
E

ï
N
G

(Wτ)

N
R

(Wτ)

ò
.

(5)

Furthermore, we can derive the probability mass function
of LG, which is shown in Eq. 4. Using the feature of
homogeneous Poisson spatial distribution, we have

E

ï
NG (Wτ)

NR (Wτ)

ò
=
∞∑
m=0

m∑
n=0

n

m
Pr {NG (Wτ) = n |NR (Wτ) = m}

× Pr {NR (Wτ) = m}

=
∞∑
m=0

m∑
n=0

n

m

∑
p

Cnmp
n(1− p)m−nPr

ß
λG
λR

= p

™
× Pr {NR (Wτ) = m}

(6)



where λG and λR are the Poisson density for NG (Wτ) and
NR (Wτ) respectively, and we have

λG
λR

=
λeLG

λe2Rmax + λw (R1 +RW + ∆vτ (W − 1))
(7)

Substituting Eq.7 to Eq. 6, we can get

E

ï
NG (Wτ)

NR (Wτ)

ò
=
∞∑
m=0

∑
p

pPr

ß
λG
λR

= p

™
λR

me−λR

m!
= E

ï
λG
λR

ò
= E

ï
λe (∆vτ −Ri −Ri+1) (W − 1)

λe2Rmax + λw (R1 +RW + ∆vτ (W − 1))

× Pr {∆vτ > Ri +Ri+1}] ,

(8)

where Ri and Ri+1 are two adjacent broadcasting range.

Here, the stable hitting probability of classic neighbor
discovery is derived by Theorem 1, when the radio range is
denoted by a general random variable.

Theorem 1. In periodic discovery method, the stable hitting
probability satisfies

lim
T→∞

E [ph] =
E [Ri +Ri+1 |∆vτ > Ri +Ri+1 ]

∆vτ
. (9)

Proof. Using Lemma 1 and Lemma 2, we have

lim
T→∞

E [ph] = 1− lim
W→∞

E

ï
NG (Wτ)

NR (Wτ)

ò
= lim
W→∞

λe (∆vτ −Ri −Ri+1) (W − 1)

λe (R1 +RW + ∆vτ (W − 1)) +λw (2Rmax)

× Pr {∆vτ > Ri +Ri+1}

=
E [Ri +Ri+1 |∆vτ > Ri +Ri+1 ]

∆vτ
.

(10)

B. Under unit disk model

The unit disk model(UDM) is the commonly-used radio
propagation model in wireless communication systems, under
which two nodes are directly connected iff the Euclidean
distance between them is smaller than the radio range. In our

analysis, we adopt r0 for the range. Therefore, substituting
the radio range Ri = Ri+1 = r0 into Eq. 6, the stable hitting
probability is given by

lim
T→∞

E
[
pUDMh

]
=

ß 2r0
∆vτ 2r0 < ∆vτ
1 2r0 ≥ ∆vτ

(11)

C. Under lognormal model

Channel randomness is caused due to the reflection, refrac-
tion and scattering induced by various obstacles in the media.
Thus, the received signals are characterized by small scale
fading as well as large scale fading in vehicular networks.
Normally, the variations of signal amplitude are modeled by
lognormal distribution for large scale fading. In addition, a
general model, i.e., Nakagami-m lognormal composite fading
model, is well known statistical distribution to model the
multipath fading and shadowing. Therefore, to modeling the
channel randomness, we adopt both lognormal model and the
Nakagami-m lognormal model for the variable radio range.
Under lognormal model, the radio range follows a Gaussian
distribution. Then, according to the radio range of UDM, the
pdf of lognormal distribution (Ri and Ri+1) is given by

fLM (r) =
1

r
√

2πσ2
e−

(ln(r)−µ)2

2σ2 , (12)

where µ = ln (r0) and σ = are mean and standard devi-
ation respectively of random variable ln (r). They can be
expressed in decibels by σdB = ξσ and µdB = ξµ, where
ξ = 10/ln (10) [16]. Taking the radio range in Eq. 9, we get
the stable hitting probability lim

T→∞
E
[
pLMh

]
under lognormal

model.

D. Under nakagami-m lognormal composite model

The radio range under Nakagami-m lognormal composite
model is expressed as

fNL (r) =

∫ ∞
0

ß
mmrm−1

ωmΓ (m)
e−

mr
ω

™
×
ß

1

ω
√

2πσ2
e−

(ln(ω)−µ)2

2σ2

™
dω

(13)

It is difficult to calculate the result in close-form. Taking
ln (ω) =x in Eq. 13, and using the approach proposed by

LG=



0 p0
∆vτ −Ri −Ri+1 p1, i ∈ [1,W − 1]

(∆vτ −Ri −Ri+1) + (∆vτ −Rj −Rj+1) p2, i, j ∈ [1,W − 1] , i 6= j
...

...
(∆vτ −Ri −Ri+1) + (∆vτ −Rj −Rj+1) + · · ·+ (∆vτ −Rk −Rk+1)︸ ︷︷ ︸

k

pk, i, j, k ∈ [1,W − 1] , i 6= j 6= k

...
...

W−1∑
i=1

(∆vτ −Ri −Ri+1) pW−1

(4)

where pk = Pr {∆vτ > Ri +Ri+1}Pr {∆vτ > Rj +Rj+1} · · ·Pr {∆vτ > Rk +Rk+1}
W−1∏

l=1,l 6=i,j,k

Pr {∆vτ ≤ Rl +Rl+1}.



Holtzman [15], [16], the finally pdf under Nakagami-m log-
normal composite model is given by

fNL (r) =
2

3
ψ (r;µ) +

1

6
ψ
Ä
r;µ+ σ

√
3
ä

+
1

6
ψ
Ä
r;µ− σ

√
3
ä (14)

where ψ (r;x) = mmrm−1

exmΓ(m)
e−

mr
ex .

Then, using Eq. 14 in Eq.9, we can have the stable hit-
ting probability lim

T→∞
E
[
pNLh

]
under Nakagami-m lognormal

composite model.

IV. FRAMEWORK FOR COOPERATIVE PERCEPTION USING
IMPROVED NEIGHBOR DISCOVERY

In section III, the closed-form expression for stable hitting
probability is derived, which is related to discovery perfor-
mance, discovery interval, network mobility and channel ran-
domness. Motivated by the expression, we design an improved
neighbor discovery, and propose the perception framework in
this section.

Generally, the highly mobility and complex radio environ-
ments are main features of the environment of intelligent ve-
hicles. However, the discovery scheme gets poor performance
if the discovery interval holds. For instance, a vehicle moves
from a sparse and high-speed avenue to a dense but low-speed
street. According to Eq. 9, the hitting probability reduces if
the discovery interval is constant. Therefore, a mobility-aware
and adaptive discovery scheme is necessary, while we use
the neighbor discovery for cooperative perception. Depending
on theorem 1, we propose an improved neighbor discovery
containing three steps.

Step1. Initially, all nodes in the network send discovery
packets every τ seconds, in which τ = g−1 (ph) and ph is
the expected threshold of the stable hitting probability. The
discovery packet contains node ID, current location, local
speed, time stamp, and a few necessary data.

Step2. In step 2, every node records all information in the
discovery packet receiving from other nodes. At the same
time, they calculate a new speed difference ∆v. A node will
move to step 3 if it perceives a variation of mobility or
channel.

Step3. Every node will calculate a new discovery interval
depending on τ ′ = g−1 (ph) in step 3. Then, nodes follow
the new patten to broadcast discovery packets.

Following the discovery process, an intelligent vehicle can
obtain information of the neighbor while it receives a discov-
ery message from the neighbor. Accordingly, the intelligent
vehicle can deliver all information it owned by broadcast a
discovery message. With these steps, cooperative perception
is finished in an low cost and easy way.

V. SIMULATION

In this section, we make Monte-Carlo simulations on
Matlab. The simulation is conducted on a bidirectional street
(as shown in Fig.1). The street contains three continuous
segments, i.e., the low mobility segment, medium mobility

segment and high mobility segment. Due to the velocity
restriction, values of velocity on east lane and west lane
are taken as 10m/s and 20m/s for low mobility segment,
20m/s and 40m/s for medium mobility segment, and 40m/s
and 40m/s for high mobility segment. In addition, the node
density on west lane and east lane are given by λw = 0.06 and
λe = 0.04 (typical density for sparse scenarios in VN [13]).
The expected radio range is defined by r0 = 50m, r0 = 100
and r0 = 150. Specifically, m takes value 0.5 and 4. Value of
σ is defined as 0.806 for heavy shadowing, 0.391 for average
shadowing, and 0.161 for light shadowing [14].

Based on our assumption, each vehicle in the network
travels at a constant speed in one segment until it moves to
the next segment. Passing and lane changing do not exist
in our simulation. Further, an open system model where
vehicles who exit the network do not re-enter into the net-
work. New vehicles are generated and get reinserted into the
network based on the assumed Poisson process. Since we are
only interested in performance of neighbor discovery in the
network-layer, we adopt a ideal MAC and PHY layers in the
simulation.

We depict results relating to the analysis of periodic discov-
ery method in Fig. 3, Fig.4, Fig.5 and Fig.6. The simulation
results match very closely with our analysis results, which
verifies that results of Theorem 1 are in fact quite accurate.

In Fig. 3, all nodes moves in low mobility segment, in
which ∆v = 30m/s. In addition, we set r0 = 50, σ = 0.161
and m = 4. Under the assumption, we analyze the value of
stable hitting probability under three radio models. Firstly,
the curve of the hitting probability is a segmental line under
UDM. The probability linearly increases with 1/τ , and the
slope is 2r0/∆v and the threshold value is 1/τ = 0.3.
Then, it is identically equal to 1. This reflects that the ratio
of the discovered neighbors linearly increases when nodes
broadcast discovery messages more quickly. All neighbors can
be discovered once the discovery frequency is bigger than
the threshold. At this time, larger discovery interval means
waste of network resource. Then, focusing on the probability
under LM and NLM, we have that the thresholds are different
although the trend of the curves are same. The threshold is
0.42 under LM and almost 1.25 under NLM. This reflects that
to discover all neighbors, nodes should make discovery more
frequently under LM and NLM. Therefore, more network
resource should be used for neighbor discovery with the
channel randomness.

We investigate the impacts of shadowing factors on neigh-
bor discovery by focusing on lognormal model. The corre-
sponding results are shown in Fig. 4. In this scenario, all nodes
moves in low mobility segment, in which ∆v = 30m/s, and
r0 = 50. We analyze the value of stable hitting probability
when the variation factor σ changes. The figure reveals two
results. Firstly, targeting at ph lim 1, the thresholds is 0.23,
0.42 and 0.67 under σ = 0.161, σ = 0.391 and σ = 0.806
respectively. Thus, to discover all neighbors, nodes should
broadcast more frequently under heavy shadowing scenarios.
In addition, the stable hitting probability for σ = 0.806 is
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always the largest when 1/τ < 0.235, which means that larger
variation of radio range brings more chance to discover more
neighbors. Thus, compared with small shadowing variation
scenarios, smaller discovery interval can be adopted when the
requirement of discovery ratio is low.

Fig. 5 depicts the hitting probability varying with the
relative velocity. In this scenario, we consider that all nodes
moves in the low mobility segment with ∆v = 30m/s,
the medium mobility segment ∆v = 60m/s, and the high
mobility segment ∆v = 80m/s. In addition, we set r0 = 50
and σ = 0.806. In the figure, the curve for ∆v = 30m/s
is always higher than the other two. The reason is that
the stable hitting probability is inversely proportional to the
relative velocity, which is revealed by Theorem 1. Targeting at
ph lim 1, the threshold is 1.67, 3.3 and 3.4 in the low mobility
segment with ∆v = 30m/s, the medium mobility segment
∆v = 60m/s, and the high mobility segment ∆v = 80m/s,
respectively. Therefore, more discovery packets needed for
higher discovery ratio.

In Fig. 6, we study the stable hitting probability varying
with the expectation radio range r0. In this scenario, all nodes
move in the low mobility segment, in which ∆v = 30m/s,
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and σ = 0.161. We set the range by r0 = 50m, r0 = 100
and r0 = 150. Obviously, the larger the range is, the higher
the stable hitting probability is. The phenomenon agrees with
results of Theorem 1. Furthermore, the threshold is 0.56, 0.83
and 1.67 for r0 = 50m, r0 = 100 and r0 = 150 targeting
at ph lim 1. Thus, nodes should broadcast discovery packets
more frequently to discover all neighbors when the radio
range is small.

VI. CONCLUSION

Neighbor discovery is the fundamental step of all peer-to-
peer communication. In this paper, we investigated the method
and novelly proposed to use it in cooperative perception of
intelligent vehicles. To address the inherent issue of neighbor
discovery, we first made an in-depth analysis of the popular
periodic discovery method. By defining a new metric, i.e.,
hitting probability, related to time and overhead, we derived
the stable hitting probability function, and gave the results
under three radio models. Motivated by the analysis results,
we proposed an improved neighbor discovery, in which nodes
change the discovery interval adaptively according to the
network status. In addition, we introduced the improved



discovery into cooperative perception. At last, our simulation
results verified the analysis results.
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