
1

On the Hop Count Statistics in Wireless
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Abstract—Consider a wireless multi-hop network where nodes are randomly distributed in a given area following a homogeneous
Poisson process. The hop count statistics, viz the probabilities related to the number of hops between two nodes, are important for
performance analysis of the multi-hop networks. In this paper, we provide analytical results on the probability that two nodes separated
by a known Euclidean distance are k hops apart in networks subject to both shadowing and small-scale fading. Some interesting
results are derived which have generic significance. For example, it is shown that the locations of nodes three or more hops away
provide little information in determining the relationship of a node with other nodes in the network. This observation is useful for the
design of distributed routing, localization and network security algorithms. As an illustration of the application of our results, we derive
the effective energy consumption per successfully transmitted packet in end-to-end packet transmissions. We show that there exists an
optimum transmission range which minimizes the effective energy consumption. The results provide useful guidelines on the design of
a randomly deployed network in a more realistic radio environment.
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1 INTRODUCTION

A wireless multi-hop network consists of a group of
nodes that communicate with each other over wireless
channels. The nodes in such a network operate in a
decentralized and self-organized manner and each node
can act as a relay to forward information toward the
destination. Wireless multi-hop networks have large po-
tential in military and civilian applications [1], [2].

There are three related probabilities characterizing the
connectivity properties of such a multi-hop network.
These are the probability that an arbitrary node is k hops
apart from another arbitrary node, denoted by Pr(k); the
probability that a node at an Euclidean distance x apart
from another node is connected to that node in exactly k
hops, denoted by Pr(k|x); and the spatial distribution of
the nodes k hops apart from a designated node, denoted
by Pr(x|k). These three probabilities are related through
Bayes’ formula and if one is computable, the other two
will be computable using similar techniques. Therefore
we call these problems collectively the hop count statistics
problems. We refer readers to Section 9 in the supple-
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mentary material for an extensive discussion on the
use of the three probabilities in various applications.

A major technical obstacle in the analysis of hop
counts statistics is the so-called spatial dependence problem
[3], [4]. The spatial dependence problem arises because
in a wireless multi-hop network the event that a ran-
domly chosen node is k hops apart from a particu-
lar node is not independent of the event that another
randomly chosen node is i hops apart from the same
node for i ≤ k. It follows that an accurate analysis on
the conditional probability Pr(k|x) needs to consider all
previous hops, which makes the analysis complicated.
This technical hurdle caused by the spatial dependence
problem is recognized in the literature but remains
unsolved [4]. In this paper, a significant improvement
on the accuracy of computing Pr(k|x) is achieved by
considering the positions of previous two hop nodes,
compared to the results considering the positions of
previous one hop nodes only. Further, we show that
considering the positions of previous two hops nodes
is enough to provide an accurate estimate of Pr(k|x). A
detailed explanation of the spatial dependence problem
is given in Section 3.1.

Further, much previous research (e.g. [5]–[8]) estab-
lishes results based on the assumption that the network
is connected, i.e. there is at least one path between every
pair of nodes. However in many wireless multi-hop
network applications, it is not only impractical (due to
the randomness of node deployment, a complex radio
environment, or the high node density required for a
large scale network to be connected [9]) but also unneces-
sary to require every node to be connected to every other
node. For example, in applications which are not life-
critical, e.g. habitat monitoring or environmental mon-



2

itoring, having a few disconnected source-destination
pairs will not cause statistically significant change in
the monitored parameters [10]. In addition, there is a
downside on the capacity to have a high node density
required for a connected network. Gupta and Kumar
[11] showed that in a connected network, as the num-
ber of nodes per unit area n increases, the throughput
per source-destination pair decreases approximately as
1/
√
n. It was further pointed out in [12] that significant

energy savings can be achieved by requiring most nodes
but not all nodes to be connected. Therefore we consider
the more realistic and practical scenario that the network
is not necessarily connected. Previous results established
on the basis of a connected network actually form special
cases of the problem examined in this paper.

The main contributions of this paper are:

• Firstly, in a network with nodes distributed in a fi-
nite area following a homogeneous Poisson process,
we derive the probability that two nodes separated
by a known Euclidean distance x are k hops apart,
i.e. Pr(k|x), considering both shadowing and small-
scale fading and using a distributed routing algo-
rithm, i.e. greedy forwarding;

• Secondly, we analyze the impact of the spatial de-
pendence problem on the accuracy of Pr(k|x);

• Thirdly, considering a sparse network in which there
is not necessarily a path between any pair of nodes,
we derive the probability distribution of the number
of hops traversed by packets before being dropped
if the transmission is unsuccessful. (An end-to-end
transmission is unsuccessful if the packet sent from
a source to a destination has to be dropped at an
intermediate node because it is unable to find a next-
hop node.)

• As an application of the results, we derive the
effective energy consumption per successfully trans-
mitted packet in end-to-end packet transmissions.
We show that there exists an optimum transmission
range which minimizes the effective energy con-
sumption. Further, the impacts of unreliable link,
node density and path loss exponent on the energy
consumption is included in the analysis.

The results in this paper provide a more complete
understanding on the properties of wireless multi-hop
networks in a more realistic and practical setting.

The rest of this paper is organized as follows: Section
8, in the supplementary material, reviews the related
work. Section 2 introduces the network models and some
definitions. The analysis of the hop count statistics and
the end-to-end energy consumption under the unit disk
communication model is given in Section 3, followed by
the analysis on the impact of the spatial dependence
problem on the accuracy of the hop count statistics in
Section 4. In Section 5, we further include the log-normal
shadowing and small-scale fading in the analysis. The
simulation results and discussions are given in Section
6. Finally Section 7 concludes this paper and proposes

possible future work.

2 SYSTEM MODEL
2.1 Network model
In this paper, we consider a wireless multi-hop net-
work where nodes are identically and independently dis-
tributed (i.i.d.) in a square according to a homogeneous
Poisson point process with a known intensity ρ.

We consider that every node has the same transmis-
sion power. The simplest radio propagation model is the
unit disk communication model. Under the unit disk
model, the power attenuates with the Euclidean distance
x from a transmitter like x−η, where η is the path loss
exponent. The path loss exponent can vary from 2 in
free space to 6 in urban areas [18]. The received signal
strength (RSS) at a receiver separated by Euclidean dis-
tance x from the transmitter is Pu(x) = CPtx

−η, where
C is a constant, Pt is the transmission power. A trans-
mission is successful iff the RSS exceeds a given thresh-
old Pmin. Therefore the required transmission power Pt

allowing a transmission range r0 is Pt = C1r
η
0 , where

C1 = Pmin/C.
The unit disk model is simple but unrealistic. In reality

the RSS may have significant variations around the mean
value, because of both large scale variation (i.e. shadow-
ing) and small-scale fading. Considering a typical type
of shadowing, i.e. the log-normal shadowing model [18] the
RSS attenuation (in dB) follows a normal distribution
with respect to the distance x between transmitter and
receiver: 10 log10(Pl(x)/CPtx

−η) ∼ Z, where Pl(x) is the
RSS in the log-normal shadowing model and Z is a zero-
mean Gaussian distributed random variable with stan-
dard deviation σ. When σ = 0 the model reduces to the
unit disk model. In practice the value of σ is often com-
puted from measured data and can be as large as 12 [18].
Denote by q(z) the pdf (probability density function)
of the shadowing fades; then: q(z) = 1

σ
√
2π

exp(− z2

2σ2 ).
As widely used in the literature [18], [20], [25], we
assume that the shadowing fades Z between all pairs
of transmitting node and receiving node are i.i.d. and
the link is symmetric. The limitation of the assumption
of the independence between links is discussed in
Section 10 in the supplementary material.

Shadowing makes the RSS vary around its mean value
over space, while the small-scale fading makes the RSS
vary around its mean value over time. In this paper,
we consider a generic model of small-scale fading, i.e.
the Nakagami-m fading [26]. By choosing different values
for the parameter m in the Nakagami-m fading model,
the results easily include several widely used fading
distributions as special cases, e.g. Rayleigh distribution
(by setting m = 1) and one-sided Gaussian distribution
(by setting m = 1/2) [26]. Subject to Nakagami-m fading,
the RSS per symbol, ω, is distributed according to a
Gamma distribution given by the following pdf [26]:

ζ(ω) =
mmωm−1

ω̄Γ(m)
exp(−mω

ω̄
), ω ≥ 0 (1)
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where Γ(.) is the standard Gamma function and ω̄ =
Pl(x) is the mean RSS (over time), which is determined
by path loss and shadowing.

We firstly conduct the analysis in the unit disk model,
then we introduce the analysis in the more realistic
Log-normal-Nakagami model, which takes into account
statistical variations of RSS around the mean value due
to both log-normal shadowing and Nakagami-m fading.

2.2 Per hop energy consumption
Assume that the time spent on transmitting a packet
of unit size over a single hop is a constant Tt, and
all nodes transmit at the same power Pt which results
in a transmission range (without shadowing) of r0 in
the unit disk model. Therefore the energy consumed in
transmitting a packet over a single hop is:

Eng(r0) =
TtPt + Engc
1− α(r0)

=
C2r

η
0 + Engc

1− α(r0)
(2)

where C2 = C1Tt is a constant, Engc is another con-
stant which includes the processing power consumption
and receiving power consumption in each node and
α(r0) = 2WNb

(W+1)2+2WNb
is the packet error rate [27],

Wmin is the minimum contention window size and Nb

is the average node degree: Nb = ρπr20 . Packet colli-
sion can increase the energy consumption, due to the
consequent re-transmission of a packet, especially when
the transmission range is large. To illustrate this effect,
we implemented simulations (in Section 6) using the
parameters shown in [27], i.e. Wmin = 64. The values of
C2 and Engc are dependent on hardware specifications,
where some typical values can be found in [28].

2.3 Routing algorithm
In addition to the impact of fading on the wireless
channel between two nodes, fading also affects the per-
formance of higher layer protocols. The impact of fading
on higher layer protocols remains to be fully investigated
[22]. In this paper, we consider the cross-layer issues
by analyzing the performance of a wireless multi-hop
network using the greedy forwarding routing algorithm,
as a typical example of distributed routing algorithms.
The GF routing belongs to the category of geographic
routing algorithms and is a widely used routing algo-
rithm for wireless multi-hop networks. Using GF, each
node makes routing decisions independently of other
nodes by using its own location information, the location
information of its neighboring nodes and the locations
of the source and the destination. GF has shown great
potential in wireless multi-hop networks because of its
distributed nature, low control overhead and capability
of adapting to dynamic network topologies [14]. The area
has attracted significant research interest, e.g. [5]–[8].

We consider a basic GF algorithm that operates fol-
lowing two rules [7]: 1) Every node tries to forward the
packet to the node within its transmission range which
is closest to the destination. 2) A packet will be dropped

if a node cannot find a next-hop neighbor that is closer
to the destination than itself, and hence the transmission
becomes unsuccessful. Moreover in the case of ties, viz.
more than one node have the same Euclidean distance
to the destination, an arbitrary one of those nodes can
be chosen as the next hop node without affecting the
results of our analysis. This is because the way to
settle ties does not affect the probability distribution
of the remaining distance to the destination at each
hop, which is the quantity used to derive our results
as shown in Section 3.2.

Note that a number of complicated recovery algo-
rithms have been proposed to route a packet around the
routing void [29]. The quality of the path established
by a greedy forwarding algorithm can be measured
by the stretch factor, which quantifies the difference
between a particular path and the shortest path [29]. By
studying the stretch factor, it is shown in [29] that a basic
GF algorithm can successfully find short routing paths
in sensing-covered networks, without complex recovery
algorithms. For analytical tractability and generality of
the results, we consider the basic greedy forwarding
algorithm without any recovery algorithm, as in [5]–[8].

2.4 Definitions of some terms

Denote by Es[ks|x0] the expected number of hops for
a packet to reach the destination, conditioned on the
Euclidean distance between source and destination being
x0 and the transmission being successful. For conve-
nience, throughout this paper we use conditioned on x0
for conditioned on the Euclidean distance between source and
destination being x0. Denote by Eu[ku|x0] the expected
number of hops traversed by a packet before it is
dropped due to the nonexistence of a next hop node
closer to the destination, conditioned on x0 and the trans-
mission being unsuccessful (in this case x0 is the distance
between the source and the intended destination).

It is worth noting that with the assumption that the
network is connected, as used in say [7], the number of
hops between two nodes increases as the transmission
range (hence average node degree) decreases. In terms
of energy consumption, the assumption of a connected
network results in a misleading conclusion that a smaller
transmission range is always better. This conclusion is
misleading because the probability of having a multi-hop
path between two nodes decreases as the transmission
range decreases and this important fact was not consid-
ered. Consequently, this conclusion is in sharp contrast
with the result obtained in this paper considering the
possibility of disconnected networks that there exists an
optimum transmission range that minimizes the energy
consumption, as shown in Fig. 7. Our analysis does not
rely on the assumption that the network is connected.

Let’s consider a network with a total of N distinct
source and destination pairs, where each source is sep-
arated from the associated destination by Euclidean
distance x0. Each source transmits a packet of unit size
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to the associated destination. Therefore there are a total
of N packets transmitted. Assume M (M ≤ N ) packets
can reach their respective destinations successfully.

Define Engeff (r0|x0) to be the effective energy con-
sumption per successfully transmitted packet for any
pair of nodes separated by Euclidean distance x0, viz
Engeff (r0|x0) is the total energy spent on transmitting
all packets divided by the number of successfully re-
ceived packets:

Engeff (r0|x0) (3)

=
MEng(r0)Es[ks|x0] + (N −M)Eng(r0)Eu[ku|x0]

M

= Eng(r0)
ϕs(x0)Es[ks|x0] + (1− ϕs(x0))Eu[ku|x0]

ϕs(x0)

where ϕs(x0) := M/N is the probability of successful
transmission between any pair of nodes separated by x0.

In a network where the transmission range without
shadowing and fading is r0, given the distribution of
the Euclidean distance between any pair of nodes f(x0),
examples of which are given in [30], the average effective
energy consumption is:

Engeff (r0) =

∫
Engeff (r0|x0)f(x0)dx0 (4)

The effective energy consumption is a measure of the
energy spent on each successfully transmitted packet. A
lower Engeff means a higher energy efficiency. We use
Engeff as the metric to investigate the energy efficiency
in end-to-end packet transmissions.

3 ANALYSIS IN THE UNIT DISK MODEL

In this section, we analyze the hop count statistics (in
particular the probability Pr(k|x)) and the effective en-
ergy consumption under the unit disk model. We start
with the calculations of the probability that two arbitrary
nodes are k hops apart for k ≥ 3 using GF. The analysis
for k = 1, 2 is straightforward.

3.1 Spatial dependence problem

Before going into the analysis, we introduce the spatial
dependence problem in the analysis of hop count statis-
tics using the unit disk model as an example. The same
problem also exists in other models. Generally, there are
two types of spatial dependence problems.

First, it can be shown that the event that a randomly
chosen node is a kth hop node (Sk) from a randomly
chosen source node (S) is not independent of the event
that another randomly chosen node is a ith hop node
for 1 ≤ i < k. Denote by C(Sk, r) the disk centered at
Sk with radius r. As shown in the example in Fig. 1(a),
the fact that Sk−1 is a k − 1th hop node from a source
node S (not shown in the figure) implies that there is
at least one node in the area C(Sk−3, r0) ∩ C(Sk−1, r0).
On the other hand Sk is a kth hop node from S implies
that there is no node in the area C(Sk−3, r0)∩C(Sk, r0),

Fig. 1: Illustration of the spatial dependence problems in the
hop count statistics using a unit disk model. Sk is the kth hop
node, where r0 is the transmission range.

otherwise Sk will become a k−2th hop node. These two
areas overlap which means that the event that Sk is a
kth hop node and the event that Sk−1 is a k − 1th hop
node are not independent.

Second, it can be shown that the event that a randomly
chosen node is a kth hop node from S is not independent
of the event that another randomly chosen node is a
kth hop node from S. As shown in the example in Fig.
1(b), Sk is a kth hop node from S implies that there is
at least one node (the k − 1th hop node) in the area
A2 = C(Sk−2, r0) ∩ C(Sk, r0). Another node S∗

k is a
kth hop node from the same S implies that there is
at least one node (the k − 1th hop node) in the area
A∗

2 = C(Sk−2, r0) ∩ C(S∗
k , r0). These two areas overlap

which means that the event that Sk is a kth hop node and
the event that S∗

k is a kth hop node are not independent.
In this paper, a significant improvement on the accuracy
of Pr(k|x) is shown by reducing the inaccuracy associ-
ated with the first type of spatial dependence problem.
The second type of spatial dependence problem can
be handled by a similar technique used in this paper.
Specifically, when considering the area covered by the
transmission range of a kth hop node, we need to
consider the overlapping of the area covered by the
transmission range of the kth hop node and the area
covered by the transmission range of other kth hop
nodes. However, it can be seen in Section 7 that the
result is fairly accurate after a proper handling of
the first type of spatial dependence problem, so that
specific handling of this second spatial dependence
problem is effectively not warranted.

3.2 Distribution of the remaining distance

Denote by A(x, r1, r2) the intersectional area of two disks
with distance x between centers and radii r1 and r2
respectively. The size of the area is [31]:

A(x, r1, r2) = (5)
min(πr21, πr

2
2), for x ≤ |r1 − r2|

r21 arccos(
x2+r21−r22

2xr1
) + r22 arccos(

x2+r22−r21
2xr2

)

−1
2

√
[(r1 + r2)2 − x2][x2 − (r1 − r2)2],

for |r1 − r2| < x < r1 + r2
0, otherwise
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Fig. 2: Possible positions for the node at the kth hop, denoted
by Sk, are located on the arc, considering the positions of Sk−1

and Sk−2, which are the nodes at the k − 1th hop and k − 2th

hop from the source respectively. A1, A2, xk, xk−1 and xk−2

are described in the following text.

Define xk to be the remaining Euclidean distance
between the kth hop node (Sk) and the destination (D).
Define A1 = A(xk−1, r0, xk) to be the intersectional
area of the disks C(Sk−1, r0) and C(D,xk). Similarly we
have A2 = A(xk−2, r0, xk). Next we record the form of
∂A(x,r1,r2)

∂r2
, which will be used later. For |r1 − r2| < x <

r1 + r2:

∂A(x, r1, r2)

∂r2
=

−r21√
1− S2

(
∂S

∂r2
) + 2r2 arccos(T ) (6)

+r22(
−1√
1− T 2

)(
∂T

∂r2
)− 1

4
√
W

(
∂W

∂r2
)

where S =
x2 + r21 − r22

2xr1
, T =

x2 + r22 − r21
2xr2

,

W = ((r1 + r2)
2 − x2)(x2 − (r1 − r2)

2)

Define f(xk, k|x0) to be the joint pdf of the remaining
Euclidean distance to the destination from Sk being xk
and the packet having been successfully forwarded k
hops, conditioned on x0. Due to the spatial dependence
problem, f(xk, k|x0) depends on the remaining distances
of all previous hop nodes, i.e. xk−1, xk−2, ..., x0. We
consider no more than two previous hops and the justi-
fication is given in Section 4.

Define g(xk, k|xk−1, xk−2, k − 1) to be the joint pdf of
the remaining Euclidean distance to the destination at
Sk being xk and the packet having been successfully
forwarded k hops, conditioned on B, where B is the
event that the remaining distances at Sk−1 and Sk−2

are xk−1 and xk−2 respectively and the packet has been
successfully forwarded k − 1 hops. (Note that a packet
has been successfully forwarded k − 1 hops necessarily
means that it has been successfully forwarded i hops
for i ≤ k − 1.) Accordingly define the cdf (cumulative
distribution function) of the remaining distance at the kth

hop node to be Pr(Xk ≤ xk, k|xk−1, xk−2, k−1). Ignoring
the boundary effect, whose impact will be discussed in
detail later, the cdf is equal to the probability that there
is at least one node in area A1 \ A2 as indicated by the

uniform-shaded area in Fig. 2. The area A2 needs to be
excluded because if there is a node in this area, that node
will be closer to the destination than Sk−1, which violates
the condition that Sk−1 is the k − 1th hop node using
GF. We approximate the size of A1 \ A2 by A1 − A2.
This approximation will greatly simplify the calculation
while giving a sufficiently accurate result, as validated in
Section 6. Due to space limitation, we omitted analytical
studies on the accuracy of the approximation. Then:

Pr(Xk ≤ xk, k|xk−1, xk−2, k − 1) (7)
= 1− exp(−ρ(A(xk−1, r0, xk)−A(xk−2, r0, xk)))

For any two nodes close to the border, the inter-
sectional area of the transmission ranges of the two
nodes may be partially located outside the network area,
which causes an error in computing the size of the area
A1\A2 in Eq. 7. This effect is due to the boundary effect.
Ignoring the boundary effect may generally cause an
overestimation on the size of A1\A2, hence an overesti-
mation on the probability of finding the next hop node.
However, simulation results in Section 6 show that the
boundary effect has very limited impact on the accuracy
of the analytical results.

Taking the derivative of the cdf with respect to xk, we
have:

g(xk, k|xk−1, xk−2, k − 1) (8)

=
∂ Pr(Xk ≤ xk, k|xk−1, xk−2, k − 1)

∂xk

= ρ

(
∂A(xk−1, r0, xk)

∂xk
− ∂A(xk−2, r0, xk)

∂xk

)
× exp (−ρ(A(xk−1, r0, xk)−A(xk−2, r0, xk)))

where the partial differentiations are given by Eq. 6.
Define h(xk, xk−1, k|x0) to be the joint pdf of the

remaining Euclidean distances at the kth hop node and
k − 1th hop node being xk and xk−1 respectively and
the packet having been successfully forwarded k hops,
conditioned on x0.

For k = 1, it is straightforward that:

f(x1, k = 1|x0) = ρ
∂A(x0, r0, x1)

∂x1
e−ρA(x0,r0,x1) (9)

For convenience, f(x1, k = i|x0) is denoted by
f(x1, i|x0) hereafter. Based on the above result, for k = 2
we have:

h(x2, x1, 2|x0) = g(x2, 2|x1, x0, 1)f(x1, 1|x0) (10)

For k > 2, h(xk, xk−1, k|x0) can be calculated recur-
sively:

h(xk, xk−1, k|x0) =

∫ x0

r0

g(xk, k|xk−1, xk−2, k − 1)

h(xk−1, xk−2, k − 1|x0)dxk−2 (11)

Finally for k > 1 we have:

f(xk, k|x0) =
∫ x0

r0

h(xk, xk−1, k|x0)dxk−1 (12)
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3.3 Hop count statistics
Define Pr(k|x0) to be the probability that the destination
can be reached at the kth hop conditioned on x0. The
destination can be reached at the kth hop if the k − 1th

hop node is within the transmission range of the desti-
nation. Therefore:

Pr(k|x0) =
∫ r0

0

f(xk−1, k − 1|x0)dxk−1 (13)

3.4 Results for successful transmissions
Denote by Prs(ks|x0) the conditional probability that a
packet can reach its destination at the kths hop, condi-
tioned on x0 and the transmission being successful. It
follows that Pr(ks|x0) = Prs(ks|x0)ϕs(x0), and:

∞∑
ks=1

ks Pr(ks|x0) = ϕs(x0)
∞∑

ks=1

ksPrs(ks|x0)

= ϕs(x0)Es[ks|x0] (14)

where ϕs(x0) and Es[ks|x0] are defined in Section III.D.
In reality, an upper bound on ks can be found beyond
which Pr(ks|x0) is 0. So Eq. 14 and other similar equa-
tions only need to be computed for a finite range of ks.

An end-to-end packet transmission is successful if a
packet can reach the destination at any number of hops.
Therefore:

ϕs(x0) =

∞∑
ks=1

Pr(ks|x0) (15)

3.5 Results for unsuccessful transmissions
Define ϕu(k|x0) to be the probability of a packet having
been successfully forwarded k hops from the source
toward the destination x0 apart, but not reaching the
destination in k hops, which distinguishes ϕu(k|x0) from
Pr(k|x0). Therefore:

ϕu(k|x0) =
∫ x0

0

f(xk, k|x0)dxk (16)

Based on the example introduced in Section III.D, we
further assume that only Mk out of N packets reach
the kth hop nodes. Then ϕu(k|x0) = Mk/N . At the next
hop, there are three possibilities for each of these Mk

packets: 1) a packet reaches the destination at the next
hop; 2) a packet makes another hop without reaching
the destination; 3) the packet is dropped. Let Wk+1 and
Mk+1 be the number of packets for which the first and
second possibilities apply.

Define ψ(ku|x0) to be the probability of the packets
being dropped at the kthu hop. Then:

ψ(ku|x0) =
Mku −Mku+1 −Wku+1

N
= ϕu(ku|x0)− ϕu(ku + 1|x0)− Pr(ku + 1|x0) (17)

The average number of hops for unsuccessful trans-
missions between a source and a destination separated
x0 apart is the expected value of ku whose pdf is given

by ψ(ku|x0). Similar to the way to derive Eq. 14, we have:∑∞
ku=1 kuψ(ku|x0) = (1− ϕs(x0))Eu[ku|x0].
Given the above analysis, the effective energy con-

sumption can be computed using Eq. 4, which is shown
in Section 6. Further, the above results can also be
useful in the analysis of delay, throughput or reliability
of end-to-end packet transmissions [8], [20], as well as
localization [8], [32], which is left as our future work.

4 IMPACT OF SPATIAL DEPENDENCE PROBLEM

In this paper, we considered that the remaining distance
at the kth hop node (Sk) depends on the remaining
distance at previous two hops nodes (Sk−1 and Sk−2).
Due to the spatial dependence problem, it can be shown
that correct analysis of the hop count statistics requires
all previous hops to be considered, but the calculation is
more complicated than if an independence assumption
is made. Previous research, e.g. [7], usually considered
the dependence on only previous one hop. In this section
we study the impact of the spatial dependence problem
on the accuracy of the Pr(k|x).

Define Am to be the intersectional area of the disk
centered at Sk−m with radius r0 and the disk centered
at D with radius xk. Therefore the precise area that
should be considered in the calculation of Eq. 7 is
A = A1 \ (A2 ∪A3 ∪ ... ∪Ak) instead of A1 \A2.

Consider only previous one hop, then: A ≈ A1. Con-
sider only previous two hops, then: A ≈ A1 \ A2 =
A1−A1 ∩A2. Consider only previous three hops, then:

A ≈ A1 \ (A2 ∪A3) = A1 −A1 ∩ (A2 ∪A3)

= A1 −A1 ∩A2−A1 ∩A3 +A1 ∩A2 ∩A3 (18)

The underlined terms are the additional terms intro-
duced when considering one more previous hop. In
considering the previous m hops instead of previous
m − 1 hops, the improvement is bounded by a term
determined by A1 ∩ Am. Furthermore, it is evident that
xk−1 < xk−2 < ... < x0. Therefore A1 > A2 > ... > Ak

and the size of A1 ∩Am is dominated by the size of Am.
Define h(xk, xk−m, k|x0) to be the joint pdf of the

remaining Euclidean distances at the kth hop node and
k − mth hop node being xk and xk−m respectively and
the packet having been successfully forwarded k hops,
conditioned on x0. Then the expected size of Am at the
kth hop can be calculated by:

E[Am, k|x0] =

∫ x0

0

∫ xk+r0

xk

A(xk−m, r0, xk)

h(xk, xk−m, k|x0)dxk−mdxk (19)

For m = 1, h(xk, xk−1, k|x0) can be calculated using
Eq. 11. For m = 2, we have:

h(xk, xk−2, k|x0) =

∫ x0

r0

g(xk, k|xk−1, xk−2, k − 1)

h(xk−1, xk−2, k − 1|x0)dxk−1 (20)

For m ≥ 3, the calculation becomes more
complicated. But approximately h(xk, xk−m, k|x0) ≈
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f(xk, k|x0)f(xk−m, k −m|x0), where f(xk, k|x0) is given
by Eq. 12. This approximation is valid because the
distance between Sk and Sk−m generally increases as
m increases, hence the size of the overlapping area
decreases. Therefore the correlation between f(xk, k|x0)
and f(xk−m, k −m|x0) reduces as m increases.
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Fig. 3: Simulation (Sim) and analytical (Ana) results for the
normalized average intersectional area size in the unit disk
model. Am is the intersectional area of the disk centered at
Sk−m with radius r0 and the disk centered at D with radius xk.

Based on the approach introduced above, Fig. 3 shows
the results for the average size of Am when the source
node and the destination node are separated by distance
x0 = 10r0. The simulation parameters are introduced in
Section 6. It is evident that the size of Am, m ≥ 3, are
negligibly small (less than 1% of the size of the area
covered by the transmission range) compared to the size
of A1 and A2. It validates the claim that the improvement
made by taking previous m hops into consideration will
be marginal for m ≥ 3, which explains our choice of
considering two previous hops only.

Our results suggest that the accuracy of the analysis
on Pr(k|x) can be significantly improved by considering
previous two hops (compared to considering previous
one hop only). However, moving beyond two hops
results in marginal improvement in accuracy of the
analysis. Therefore, the conclusion can be drawn that
the locations of nodes three or more hops away provide
little information for a node to determine its geometric
relationship with other nodes. This conclusion provides
analytical support for observations, to this point unsup-
ported by analysis, in routing, localization and network
security that taking into account the (location or link sta-
tus) information of two-hops neighbors can significantly
improve the routing [33] (respectively localization [34],
network security [35]) performance compared with using
one-hop neighborhood information only. However be-
yond two hops, taking into account more neighborhood
information only has marginal impact. Therefore many
distributed routing, localization and network security
protocols use two-hop neighborhood information.

5 ANALYSIS IN THE LOG-NORMAL-NAKAGAMI
MODEL
The technique to incorporate the impacts of both shad-
owing and small-scale fading is through the use of the
random split property of a Poisson process.

5.1 Random split of a Poisson process
First, we introduce a random variable named the Nak-
agami fades Ω0 which follows the Gamma distribution
with mean 1. Therefore the pdf of Ω0 is

ζ0(ω0) =
mmωm−1

0

Γ(m)
exp(−mω0), ω0 ≥ 0 (21)

where m is introduced in Section 2.1.
It can be shown that the random variable Pl(x)Ω0

follows the Gamma distribution with mean Pl(x), where
Pl(x) = CPtx

−η10Z/10 is the RSS given by the log-
normal shadowing model introduced in Section 2.1.
Then in the Log-normal-Nakagami model, the RSS at a
receiver at distance x from the transmitter is PN (x) =
Pl(x)Ω0 = CPtx

−η10Z/10Ω0, where Z is a zero-mean
Gaussian distributed random variable and Ω0 is a
Gamma distributed random variable with mean 1.

According to the random split property of a Pois-
son process [36], the subset of nodes whose RSS from
a particular transmitting node with shadowing fades
Z ∈ [z, z + dz] and Nakagami fades Ω0 ∈ [ω0, ω0 + dω0]
are i.i.d. following a Poisson process with intensity
ρq(z)dzζ0(ω0)dω0. Via the splitting of the Poisson pro-
cess, we can study the sub-process by the same technique
used in the unit disk model.

Remark 1: The aforementioned technique can be ex-
tended to other communication models (e.g. the class of
random connection models [37]). In a random connection
model [37], two arbitrary nodes separated by Euclidean
distance x are directly connected with probability γ(x),
where γ(x) satisfies two conditions: 1) the probability
is a non-increasing function mapping from the positive
real numbers into [0, 1]; 2) the event that a pair of nodes
are directly connected is independent of the event that
another pair of nodes are directly connected.

Define Prl(k|x0) to be the probability that two ar-
bitrary nodes separated by Euclidean distance x0 are
k hops apart using GF in the Log-normal-Nakagami
model. We start with k=1.

5.2 Probability of direct connection
Under the Log-normal-Nakagami model, two nodes sep-
arated by distance x are directly connected iff the RSS
exceeds a given threshold Pmin. Without shadowing and
small-scale fading, the model reduces to the unit disk
model where Pmin = CPtr

−η
0 . With shadowing and

fading, we have:

Pr(PN (x) ≥ Pmin) = Pr(CPtx
−η10Z/10Ω0 ≥ CPtr

−η
0 )

= Pr(Z ≥ 10η log10(
x

r0Ω
1/η
0

)) (22)

= Pr(x ≤ r0Ω
1
η

0 exp(
Z ln 10

10η
)) (23)

Thus two nodes are directly connected if either of
the following two conditions is satisfied: 1) Given the
distance x and Nakagami fades value ω0, two nodes
are directly connected iff the (random) shadowing fades
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Z ≥ 10η log10(
x

r0ω
1/η
0

). 2) Given that the shadowing fades
z and Nakagami fades value ω0, two nodes are directly
connected iff their distance x ≤ r0ω

1/η
0 exp( z ln 10

10η ).
Based on the first condition, the probability of having a

direct connection between two arbitrary nodes separated
by x0 is:

Prl(k = 1|x0) =
∫ ∞

0

∫ ∞

10η log10(
x

r0ω
1/η
0

)

q(z)dzζ0(ω0)dω0 (24)

=

∫ ∞

0

1

2

1− erf(
10η log10(

x

r0ω
1/η
0

)
√
2σ2

)

 ζ0(ω0)dω0 (25)

where erf(.) is the error function.
Remark 2: Without small-scale fading, viz. considering

the log-normal shadowing model only, the probability of
having a direct connection between two arbitrary nodes
separated by x0 is: 1

2 (1−erf(
10η log10(

x
r0

)
√
2σ2

)). Similarly, the
following analysis can be reduced to the analysis without
small-scale fading by simply removing the integral with
respect to ω0.

In order to derive Prl(k|x0) for k > 1, we use the
second condition to study the probability of a direct
connection. Define rN (zS , ωS) to be the transmission
range of a transmitter (S) conditioned on the shadowing
fades and Nakagami fades being zS and ωS respectively.
Then:

rN (zS , ωS) = r0ω
1/η
S exp(

zS ln 10

10η
) (26)

Therefore any node, whose RSS from the transmitter
(S) has shadowing fades ZS ∈ [zS , zS + dzS ] and Nak-
agami fades ΩS ∈ [ωS , ωS+dωS ], is directly connected to
S iff its Euclidean distance to the transmitter is smaller
than or equal to rN (zS , ωS). This allows us to apply the
analysis used in the unit disk model.

5.3 Distribution of the remaining distance

Fig. 4: Possible positions for the kth hop node (Sk), are located
on the arc. Consider the nodes whose RSS from Sk−1 has fades
Z1 ∈ [z1, z1 + dz1] and Ω1 ∈ [ω1, ω1 + dω1]; while its RSS from
Sk−2 has fades Z2 ∈ [z2, z2 + dz2] and Ω2 ∈ [ω2, ω2 + dω2]. The
dashed-line circles represent the transmission range of Sk−1

(resp. Sk−2) conditioned on the above values of shadowing and
Nakagami fades. A1 and A2 are described in the following.

Define area size A1 = A(xk−1, rN (z1, ω1), xk) and
A2 = A(xk−2, rN (z2, ω2), xk), where A(x, r1, r2) and
xk are defined in Section 3. Define fl(xk, k|x0),
gl(xk, k|xk−1, xk−2, k − 1), the event Bl, Prl(Xk ≤
xk, k|xk−1, xk−2, k−1) and hl(xk, xk−1, k|x0) analogously
as in Section 3 and use the subscript l to mark the cor-
responding probabilities in the Log-normal-Nakagami
model. We will derive Prl(Xk ≤ xk, k|xk−1, xk−2, k − 1)
by studying the following two events. Denote by C the
event that there is at least one node whose Euclidean
distance to the destination is smaller than xk and has a
direct connection to Sk−1 and has no direct connection
to Sk−m for m ∈ [2, k] where S0 is the source node.
Denote by D the event that the node Sk−1 is not directly
connected to the destination. Events C and D are inde-
pendent because of the independence of the shadowing
and Nakagami fades. It is evident that:

Prl(Xk ≤ xk, k|xk−1, xk−2, k − 1) = Pr(C|Bl)× Pr(D|Bl)
(27)

We start with the analysis of event C. In this paragraph
we only consider the subset of nodes whose RSS from
Sk−1 has fades Z1 ∈ [z1, z1+dz1] and Ω1 ∈ [ω1, ω1+dω1];
while its RSS from Sk−2 has fades Z2 ∈ [z2, z2 + dz2]
and Ω2 ∈ [ω2, ω2 + dω2]. Due to the independence of the
fades and the property of Poisson process, these nodes
are distributed following a homogeneous Poisson pro-
cess with intensity ρq(z1)q(z2)dz1dz2ζ0(ω1)ζ0(ω2)dω1dω2.
Denote by E the event that Z1 ∈ [z1, z1 + dz1] and Z2 ∈
[z2, z2+dz2] and Ω1 ∈ [ω1, ω1+dω1] and Ω2 ∈ [ω2, ω2+dω2].
Pr(C, E|Bl) is equal to the probability that there is at
least one node in area A1 \ A2, as shown in Fig. 4. We
approximate the size of area A1\A2 by (A1−A2)

+, where
(A1−A2)

+ = max{0, A1−A2}. (Through this approxima-
tion we ignored some rare events that cause A1−A2 < 0,
which can possibly occur when rN (z2, ω2) is much larger
than rN (z1, ω1). In contrast under the unit disk model
it is always the case that A1 − A2 ≥ 0.) Considering
this subset of nodes only, 1− Pr(C, E|Bl) is equal to 1−
exp(−(A1 − A2)

+ρq(z1)q(z2)dz1dz2ζ0(ω1)ζ0(ω2)dω1dω2),
which is the probability that there is no node in area
A1 \ A2. Note that A1 depends on z1 and ω1; while A2

depends on z2 and ω2.
Then considering all subset of nodes, we have:

Pr(C|Bl)

= 1−
∏

z1,z2∈(−∞,+∞),ω1,ω2∈(0,+∞)

exp(−(A1 −A2)
+ρ

q(z1)q(z2)dz1dz2ζ0(ω1)ζ0(ω2)dω1dω2 (28)

= 1− exp(−
∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
(A1 −A2)

+ρ

q(z1)q(z2)dz1dz2ζ0(ω1)ζ0(ω2)dω1dω2) (29)

Since the event D only depends on xk−1, we have:

Pr(D|Bl) = 1− Prl(1|xk−1) (30)
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Then substitute Eq. 29 and Eq. 30 into Eq. 27:

Prl(Xk ≤ xk, k|xk−1, xk−2, k − 1) (31)

= (1− exp(−
∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
(A1 −A2)

+ρ

q(z1)q(z2)dz1dz2ζ0(ω1)ζ0(ω2)dω1dω2))

×(1− Prl(1|xk−1))

By Leibniz integral rule:

gl(xk, k|xk−1, xk−2, k − 1) (32)

=
∂ Prl(Xk ≤ xk, k|xk−1, xk−2, k − 1)

∂xk

=

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

∂(A1 −A2)
+

∂xk
ρq(z1)q(z2)dz1dz2

ζ0(ω1)ζ0(ω2)dω1dω2

× exp(−
∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
(A1 −A2)

+ρq(z1)q(z2)

ζ0(ω1)ζ0(ω2)dz1dz2dω1dω2)(1− Prl(1|xk−1))

where ∂A1/∂xk and ∂A2/∂xk can be calculated by Eq. 6.
It is straightforward that for k = 1, we have:

fl(x1, 1|x0) (33)

=

∫ ∞

0

∫ ∞

−∞

∂A(x0, rN (z1), x1)

∂x1
ρq(z1)dz1ζ0(ω1)dω1

× exp(−
∫ ∞

0

∫ ∞

−∞
A(x0, rN (z1), x1)ρq(z1)dz1

ζ0(ω1)dω1)(1− Prl(1|x0))

For k = 2, the pdf of the remaining distance of the
previous hop is given by Eq. 33. Therefore:

hl(x2, x1, 2|x0) = gl(x2, 2|x1, x0, 1)fl(x1, 1|x0) (34)

For k > 2, the joint pdf of xk and xk−1 is calculated
recursively:

hl(xk, xk−1, k|x0) =

∫ x0

0

gl(xk, k|xk−1, xk−2, k − 1)

hl(xk−1, xk−2, k − 1|x0)dxk−2 (35)

Finally for k ≥ 2, we have:

fl(xk, k|x0) =
∫ x0

0

hl(xk, xk−1, k|x0)dxk−1 (36)

5.4 Hop count statistics
Because of shadowing and small-scale fading, the des-
tination can be possibly reached in a single hop no
matter how far the remaining distance from that hop
is. Therefore for k ≥ 2:

Prl(k|x0) =
∫ x0

0

Prl(1|xk−1)fl(xk−1, k−1|x0)dxk−1 (37)

Remark 3: Based on the above results, we can cal-
culate the average number of hops for successful and
unsuccessful transmissions, the probability of successful
transmissions and the effective energy consumption by
the same technique used in the unit disk model.

6 SIMULATION RESULTS

In this section, we report on simulations to validate the
accuracy of the analytical results. The simulations are
conducted in a wireless multi-hop network simulator
written in C++. Nodes are deployed in a 400×400 square
following a homogeneous Poisson process with intensity
ρ = 0.003. The boundary effect is included in the
simulation but it is shown to have a limited impact on
the results. The route between two nodes is determined
by the basic GF algorithm. The transmission range r0
is varied from 10 to 50, which results in the average
node degree varying from around 1 to 24. Note that r0
is the transmission range without shadowing and small-
scale fading. The value of r0 can be specified by the
network designer via adjusting the transmission power
and receiver gain. The existence of a direct wireless
link between an arbitrary pair of nodes will be further
affected by shadowing and small-scale fading. Several
values of the standard deviation in log-normal shadow-
ing model have been used in our simulations, but only
the results for σ = 4 are shown in this paper because
other results show a similar trend. Further, we only
include the results for C2 = 0.01 and Engc = 0.02 (in
Eq. 2) as an example and the value of Engc is found
to have very limited impact on the results. In order to
distinguish the impact on the network performance of
different parameters, the packet error rate is not included
(i.e. set α = 0) except Fig. 8 and the small-scale fading
is not included expect Fig. 6 and Fig. 7(b). Every point
shown in the simulation result is the average value from
3000 simulations. As the number of instances of random
networks used in the simulation is large, the confidence
interval is too small to be distinguishable and hence is
ignored in the following plots.

6.1 Hop count statistics
Fig. 5 shows the probability that two arbitrary nodes
separated by distance x0 are k hops apart using GF in the
unit disk model and the log-normal shadowing model
respectively. In the log-normal shadowing model [18],
the received signal strength (RSS) attenuation (in dB)
follows a normal distribution with standard deviation
σ around the mean value. The mean value is given by
the RSS under the path loss attenuation model, which is
the model adopted in the unit disk model to determine
the transmission range. Therefore when σ = 0, the log-
normal shadowing model reduces to the unit disk model.
As shown in Fig. 5, Dep2-unit and Dep2-log completely
agree and the analytical results have a good match with
the simulation results, which verifies the accuracy of our
analysis in both the unit disk model and the log-normal
shadowing model.

In addition, we can see that the accuracy is signifi-
cantly improved by considering two previous hops (the
result from this paper) compared with previous analysis
considering only one previous hop (e.g. [23]). Further, it
can be seen in Fig. 5 that the improvement of accuracy
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will be marginal if more than two previous hops are
considered, which also confirms the analysis in Section
4. We expect this observation to be extended to many
other areas (e.g. routing, localization, network security)
and the approach used for shedding the independence
assumption can be seen in a broader context. Specifically,
our approach for shedding the independence assump-
tion is to show that one can improve the accuracy of
Pr(k|x) by taking into account the locations of previous
m-hops nodes (1 ≤ m ≤ k − 1). However the improve-
ment becomes marginal as m > 2. This suggests that the
locations of nodes three or more hops away provide little
information in determining the geometric relationship of
a node with other nodes in the network. This observation
further confirms our assertion in Section 4.

Furthermore, it is interesting to see that packets can
be transmitted to a larger distance under the log-normal
shadowing model than under the unit disk model, at
the same number of hops. This is because log-normal
shadowing introduces a Gaussian variation of the trans-
mission range around the mean value, and with a higher
chance a node can find a next-hop neighbor closer to the
destination. This phenomenon is also observed in the
study of connectivity [19].

Fig. 6 shows the probability that two arbitrary nodes
separated by distance x0 are k hops apart in the Log-
normal-Nakagami model when the Nakagami parameter
m = 1. Therefore, the corresponding network subjects to
log-normal shadowing and Rayleigh fading. The result
shown in Fig. 6 verifies the accuracy of our analysis.
Further, it can be seen that Rayleigh fading reduces
the probability that two nodes are connected by a path
with k hops. This can be explained by the exponentially
distributed RSS over the mean value caused by the
Rayleigh fading which reduces the probability of direct
connection. Therefore, Rayleigh fading has a negative
impact on the network connectivity. A similar result is
also observed in the next subsection.

6.2 Effective energy consumption

Fig. 7 shows the probability of successful transmissions
and the Engeff . It can be seen that, unsurprisingly, the
probability of successful transmissions increases from
nearly 0 to nearly 1 as r0 increased from 10 to 50. In
contrast, the effective energy consumption could hardly
have been predicted by heuristic reasoning, and needs
more explanations.

Take the results under the unit disk model as example.
When r0 is small, the network is made up of a large num-
ber of small components. An increase in r0 will cause an
increase in the size (number of nodes) of the components
and also a reduction in the number of components.
Therefore the average number of hops for unsuccessful
transmission increases, and the energy wasted on un-
successful transmission also increases. Thus there is an
initial increase in Engeff with the increase in r0. As r0
further increases, although the average number of hops
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(a) In the unit disk model, Dep2-unit is the result in the unit disk
model from this paper, while Dep2-log is the result in log-normal
shadowing model by letting σ = 0. Dep2-log is indistinguishable in
the plot because the curve fully agrees with Dep2-unit.
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(b) In the log-normal shadowing model

Fig. 5: The probability that two arbitrary nodes separated by
Euclidean distance x0 are k hops apart. Dep1 stands for the
result calculated by considering the dependency on previous
one hop. Dep2 is the result from this paper.

for successful/unsuccessful transmission still increases,
the energy wasted on unsuccessful transmission starts
to decrease as more source-destination pairs become
connected. The balance of the two effects causes Engeff
to peak at r0 ≈ 19. Above this transmission range, the de-
crease in wasted energy starts to dominate, which causes
a subsequent decrease in Engeff . As r0 increases further,
the average number of hops approaches its maximum
and the energy wasted on unsuccessful transmission also
reduces to a small amount. These cause Engeff to reach
its minimum at r0 ≈ 31. Above this transmission range,
most source-destination pairs are connected as shown
in Fig. 7 (a.1). Another effect starts to dominate. That
is, the increase in r0 causes the increase in the per-
hop energy consumption (like r20) and the decrease in
the number of hops (approximately like 1/r0). The net
effect is an increase in Engeff with the increased r0.
Most previous studies have only considered this last
stage of the relation between the energy consumption



11

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/r
0

T
he

 p
ro

ba
bi

lit
y 

th
at

 tw
o 

no
de

s 
w

ith
 d

is
ta

nc
e 

x 0 a
re

 k
 h

op
s 

ap
ar

t Poisson, Log−normal−Rayleigh, Area=4002, r
0
=30, η=4

 

 

Simulation log−normal−rayleigh
Analytical log−normal−rayleigh
Simulation log−normal

k=1

k=2

k=3

k=4

k=5
k=6

k=7
k=8

k=9
k=10

k=11
k=12

k=13 k=14

Fig. 6: The probability that two arbitrary nodes separated by
distance x0 are k hops apart in a network subject to log-normal
shadowing and Rayleigh fading.
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(1) Unit disk model
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(2) Log−normal shadowing model
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(a) Without small-scale fading
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(a) Unit disk with Rayleigh fading
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(b) Log−normal shadowing with Rayleigh fading
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Fig. 7: Probability of successful transmissions (Succ) and ef-
fective energy consumption (Eng) in the network. Subfigure
(a) shows the results without small-scale fading and (b) shows
the results with Rayleigh fading. Further, ”No Rayleigh” is the
result without small-scale fading shown in (b) for comparison.

and the transmission range and therefore cannot give a
complete understanding of the energy efficiency in end-
to-end packet transmissions.

It is interesting to note that the energy optimizing
transmission range is around 31, which corresponds to
a network with most (around 70%) source-destination
pairs connected but not all of them. (Note that for
r0 < 20, Engeff may be smaller than the minimum
Engeff . However at such value of r0 most source-
destination pairs are disconnected using GF and no
meaningful service can be provided by the wireless
multi-hop network.) In order for more than 99% source-
destination pairs to be connected, r0 has to be larger
than 47 and Engeff will increase to more than 225% of
its minimum value in the unit disk model. A similar

result can also be found in the log-normal shadowing
model and the models with Rayleigh fading. Therefore
significant energy savings can be obtained by requiring
most nodes, instead of all nodes, in the network to
be connected. This observation also agrees with the
analytical results in [12]. In addition, our result gives
the amount of energy that can be saved. Purely from an
energy-saving perspective and without consideration of
other implications, this interesting result shows that the
most energy-efficient topology control algorithms should
be designed to let 70% (under this network setting) of
the source-destination pairs be connected at the same
time. The result sheds insight on the design of large
wireless multi-hop networks where energy-efficiency is
a important issue.

Further, Fig. 7 (b) shows that the probability of suc-
cessful transmissions is slightly lower in a network
with Rayleigh fading compared to a network without
Rayleigh fading. This confirms our assertion in the pre-
vious subsection.
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Fig. 8: The effective energy consumption subject to packet error.

Fig. 8 shows the effective energy consumption with a
non-zero packet error rate as shown in Eq. 2. The packet
error rate increases from 0.004 when r0 = 10 to 0.40 when
r0 = 50. It can be seen that as the transmission range
increases, the tail of the effective energy consumption
increases faster than its error-free counterpart. This is
because an increase in the transmission range causes an
increase in the number of neighbors and also an increase
in the distance between the transmitter and the receiver.
This in turn increases the packet error rate and the
energy consumption. Therefore when the packet error
rate is non-zero, the energy optimizing transmission
range becomes smaller as can be seen in Fig. 8.

Fig. 9 shows the effective energy consumption under
the log-normal shadowing model with various values
of standard deviations. It can be seen that a larger
variance in the log-normal shadowing model leads to
a lower energy consumption and a smaller optimum
transmission range. This is because a larger variance
provides a larger probability for a node to forward the
packet to a further node that is closer to the intended
destination, which is similar to the observation obtained
in Section 6.1.
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Fig. 9: The effective energy consumption under the log-normal
shadowing model with various values of standard deviations.

6.3 Impact of node density and path loss exponent
on the optimum transmission range
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Fig. 10: Impact of node density and path loss exponent on the
optimum transmission range.

Fig. 10 illustrates the impact of node density and path
loss exponent on the optimum transmission range in
the unit disk model. It can be seen that an increase in
the node density will cause a decrease in the optimum
transmission range. It is because an increase in node
density without reduction in transmission range causes
an increase in the average number of neighbors as well
as the probability of successful transmissions between
two nodes. Fig. 10 also shows that a higher path loss
exponent will result in a smaller optimum transmission
range. This is because an increase in the path loss
exponent will cause an increase in the per-hop energy
consumption, as given by Eq. 2. Therefore under a higher
value of the path loss exponent it is more energy-efficient
to have smaller components, hence a smaller optimum
transmission range.

It has been shown that the probability Pr(k|x) and the
energy consumption are affected by the node density
and path loss exponent. Our analysis fully captures these
effects and sheds insight on the design of a wireless
multi-hop network.

7 CONCLUSIONS AND FUTURE WORK

We investigated the hop count statistics and the energy
consumed in the end-to-end packet transmissions in a
wireless multi-hop network. Considering both shadow-
ing and small-scale fading, we obtained analytical results

on the probability distribution of the number of hops
between two arbitrary nodes. Further, we analyzed the
impact of the spatial dependence problem on the Pr(k|x).
Considering the randomness of node deployment and a
complex radio environment which may result in discon-
nected paths between nodes, we derived the distribution
of the number of hops traversed by packets before
being dropped if the transmission is unsuccessful. As an
application of the above results, we derived the effective
energy consumption per successfully transmitted packet
in end-to-end packet transmission. We showed that there
exists an optimum transmission range which minimizes
the effective energy consumption. The research provides
useful guidelines on the design of a multi-hop network
in the presence of shadowing and fading.

The hop count statistics obtained in this paper will also
be useful to determine other aspects of wireless multi-
hop network performance, e.g. end-to-end throughput
and delay. Allowing disconnected paths enables our
results to be applicable to sparse network, which is es-
sential to the study of partial connectivity [38]. Moreover,
we plan to study the hop count statistics and energy
consumption in a mobile ad-hoc network in the future.
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SUPPLEMENTARY MATERIAL

8 RELATED WORK

The hop count statistics were first investigated by Chan-
dler [13] in 1989. He analyzed the probability that two
randomly chosen nodes separated by a known dis-
tance can communicate in k or less hops where nodes
are uniformly distributed over a plane. However the
analysis was incomplete as the aforementioned spatial
dependence problem was incorrectly ignored. Ta et al. [3]
investigated the probability Pr(k|x) for nodes Poissonly
distributed in a square. They pointed out the spatial
dependence problem in the analysis of the probabil-
ity Pr(k|x). Later in [4] the same authors empirically
improved their earlier result in [3] by considering the
impact of boundary effect and the spatial dependence
problem.

In real applications, the packets are forwarded from a
source to a destination according to certain routing algo-
rithms. Many routing algorithms (e.g. LEACH, AODV
or geographic routing [14]) share the similar idea of
greedy forwarding (GF) [14], that is, to forward the
message to the node that is closest to the destination
[15]. Much research on the hop count statistics is based
on the distributed routing algorithm GF, however the
spatial dependence problem were incorrectly ignored.
Specifically, two nodes are k hops apart if the path
between them, using GF, is k hops. Zorzi et al. [7]
proposed a GF algorithm for a network where nodes
are Poissonly distributed in the coverage area of a trans-
mitting node. They studied an upper and a lower bound
on the average number of hops between two nodes sep-
arated by a known Euclidean distance, where the focus
of this paper is on a complete characterization of the
probability distribution of the number of hops between
two arbitrary nodes in the network. In [16], Contla
and Stojmenovic considered position based routing
schemes for a wireless multi-hop network where nodes
are uniformly distributed in a square. They studied
the average number of hops between an arbitrary
pair of source-destination nodes. As pointed out in
Section 1, many applications need the knowledge of the
probability distribution of the number of hops, instead
of just the mean value. Dulman et al. [6] investigated the
probability Pr(k|x) by estimating the expected progress
per hop using GF. They considered the impact of the
Euclidean distance between neighboring nodes in the
previous hop on the progress in the current hop. Both [7]
and [6] were established on the assumption that a packet
can always reach the destination using GF. Further, the
aforementioned research only considered the impact of
one previous hop in their studies. Recently, the accuracy
of the probability Pr(k|x) was significantly improved in
[17] by considering the spatial dependence of two-hop
neighbors.

The aforementioned results are all based on the unit
disk communication model, in which two nodes are directly
connected if and only if (iff) the Euclidean distance be-

tween them is smaller than or equal to the transmission
range. The unit disk model is simple but unrealistic [18].
Considering the log-normal shadowing model, Hekmat
and Mieghem [19] showed, through simulations, that the
probability of a network being connected increases with
increasing value of the shadowing parameter, which is
the ratio between the standard deviation of shadowing
and the path loss exponent [18]. Mukherjee and Avidor
[20] considered the impact of the log-normal shadowing
on the probability Pr(k|x) in a wireless ad hoc network
where nodes are Poissonly distributed in a disk, which
ignored the spatial dependence problem. In addition
to shadowing, the communication between two nodes
can be affected by the small-scale fading (e.g. Rayleigh
fading). From the connectivity point of view, Miorandi
and Altman [21] studied the node isolation probability
in a network subject to both log-normal shadowing
and Rayleigh fading. They showed that Rayleigh fad-
ing reduces the connectivity probability of the network.
Moreover, Haenggi [22] studied the routing performance
for large multi-hop networks, considering the impact of
Rayleigh fading on the end-to-end delivery probability.
It is shown that routing over many short hops is not
as beneficial in a network subject to Rayleigh fading
as that for a network without Rayleigh fading. In this
paper, we considered the impact of both log-normal
shadowing and small-scale fading on the hop count
statistics. Further, our analysis takes into account the
impact of the spatial dependence problem, which is a
major technical hurdle in the accurate analysis of the
probability Pr(k|x).

The analysis on the hop count statistics can be used
in a number of areas in wireless multi-hop networks.
This paper focuses on its use in energy-efficient oper-
ations of wireless multi-hop networks as an example.
Minimizing energy consumption is one of the major
considerations in the design of battery powered wireless
multi-hop networks. In many applications it is difficult
to change or re-charge a battery for the wireless nodes.
From a designer point of view, a popular approach
of reducing energy consumption is optimally choosing
the transmission power. In [23], Deng et al. considered
a network where nodes are Poissonly distributed in a
circular area. They assumed that there is always a path
between any pair of nodes using GF. By analyzing the
average progress per hop that a packet is transmitted
towards the destination, they obtained analytical results
on the distance-energy efficiency, which is the ratio of
the average progress to the energy consumed in a sin-
gle transmission, and the optimum transmission range
that maximizes the distance-energy efficiency for high-
density networks. Zhang and Gorce [24] considered the
impact on energy consumption of unreliable links. They
postulated that with a certain probability a transmission
between two directly connected nodes is unsuccessful,
re-transmissions may then be required and energy con-
sumption may be consequently higher. The extra energy
consumed due to unreliable links is also considered in
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this paper.

9 USEFULNESS OF THE HOP COUNT STATIS-
TICS

The results on the hop count statistics hold the key to
solving a large number of problems in wireless multi-
hop networks:

• The summation of Pr (k) from k = 1 to k = ∞
provides the probability that two randomly chosen
nodes are connected (via a multi-hop path), which
in turn can lead to result on the probability of a
connected network. The result will be valid for not
only large-scale networks [39] but also for small-
scale networks which are often encountered in real
applications. So far, there are few analytical results
on the connectivity of small-scale networks.

• The hop count statistics are also useful in network
capacity analysis. In [40], it is demonstrated that
the capacity scaling law of multi-hop networks ob-
served in [11] can be easily explained by the increase
in the average number of hops (hence the increase in
the portion of bandwidth spent on relaying traffic)
as the network becomes larger.

• The probability Pr(k) is also useful in estimating the
energy consumption, the network lifetime and the
reliability of end-to-end packet transmission [7]. As
shown in this paper, Pr(k) can be used to estimate
the effective energy consumption and help the net-
work designers to choose the optimum transmission
range/power to minimize the energy consumption.
It can also be readily used to help a network
designer to set the transmission range/power to
provide a guaranteed performance on the end-to-
end packet transmissions.

• The probability Pr(k|x) has been used in [41] to
form a novel approach to obtain bounds on the
critical density for percolation in wireless multi-hop
networks, a well-known open problem in the area.
In [38] results on Pr(k|x) are used as a main tool
to study the partial connectivity of a wireless multi-
hop network with infrastructure support. Besides its
use in performance analysis, a protocol designer can
use results on Pr(k|x) to help choose the optimum
protocol parameters, e.g. the timeout parameter TTL
used in many routing protocols, to balance band-
width (or energy) consumption and probability of
successful delivery [5].

• The probability density Pr(x|k) is useful in esti-
mating the distance between two nodes from their
neighborhood information and obtaining variance
of such an estimate, which has in turn been used
in forming a localization algorithm with improved
performance [8], [32].

• Further, the technique used to derive Pr(k|x) can be
simplified to study 1D networks or grid networks so
that the analysis can be applied to study vehicular
networks, see [42] for an example where Pr(k|x) is

used to derive the access and connectivity probabil-
ities of 1D vehicular networks.

10 RELIABILITY OF THE ASSUMPTION OF THE
INDEPENDENCE BETWEEN LINKS

In some environments, the assumption of indepen-
dence of connections may not be accurate while in
other environments (e.g. open space) it is a reasonable
assumption. For example, it is generally accepted that
if a pair of transmitters are separated by more than λ/4,
where λ is the wavelength, their signals at a common
receiver can be regarded as statistically independent.
Further it was shown [43] that if a pair of receivers are
separated by more than λ, their received signals from a
common transmitter are only weakly correlated (with
a correlation coefficient less than 0.15). At a typical
frequency of 5GHz, λ = 0.06m. Thus the requirement
on the separation of vehicles can be easily met. We
also note that although field measurements in real
applications seem to indicate that the connectivity
between different pairs of geographically/frequency
proximate wireless nodes are correlated [44], [45],
the independence assumption is generally considered
appropriate for far-field transmission and has been
widely used in the literature under many channel
models including the log-normal shadowing model
[18], [20], [25].


