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Abstract—Wireless multi-hop networks with infrastructure
support have been actively studied to solve the scalability problem
in large scale vehicular and sensor networks that the end-to-
end throughput and other performance metrics decrease sharply
with the increase in the number of nodes in the network. In
the infrastructure-based networks, wireless nodes are allowed to
access the base stations either directly or via a multi-hop path.
In order to provide meaningful services, it is often desirable to
limit the number of hops in the wireless multi-hop path. In this
paper, we study a 2-D wireless network where users are Poissonly
distributed in a square area and base stations are placed at the
four corners of the square area as a typical component of a
larger network where users are randomly distributed and base
stations are regularly deployed. We obtain analytically the exact
and approximate k-hop connectivity probability for k = 2, i.e. the
probability that all users can access to at least one base station
in at most two hops, under a generic channel model. The results
are verified by simulations and can be used in network planning,
design and resource management.

Index Terms—wireless network, infrastructure-based, generic
channel model, connectivity probability, two-hop-relay.

I. INTRODUCTION

Wireless ad hoc networks have been actively studied in the
recent decades. However, the studies have shown that ad hoc
networks are not scalable. For example, consider an ad hoc
network formed by having n nodes uniformly distributed on
a unit disk area and each node is capable of transmitting at
W bits per second, Gupta and Kumar [1] reported that the
throughput obtainable by each node for a randomly chosen
destination is Θ( W√

n logn
) bits per second under a protocol

or physical model. The result suggests that the per-node
throughput approaches zero as the number of nodes increases.
This shortcoming of the ad hoc networks could seriously
impact its usefulness in real world deployment.

The key factor which causes the large degradation in per-
node throughput of a large scale ad hoc network is found
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to be the average hop count for each source node to reach
its destination node. In particular, Li et al. [2] have shown
that for the per-node throughput to scale with the network
size the average hop count between source and destination
nodes must remain small as the network grows. Therefore, it
is meaningful to limit the communication path length between
nodes in the network to keep the average hop count in the
network small. A possible solution not to affect the selection
of source/destination pairs, namely the traffic pattern, in the
network is to introduce some long-range links in the network
[3] by using base stations which are interconnected by a wired
backbone network. This type of network is well known as the
wireless network with infrastructure support. By going through
the base stations and the backbone network, the source nodes
can then leapfrog a number of hops and reach their destination
nodes in a much reduced hop count, thus guaranteeing QoS.
Further we can restrict the maximum allowable hop count from
any node to their respective nearest base stations. This has led
to the proposal of the so-called the k-hop connectivity problem,
i.e. all nodes must be either directly or indirectly connected
to at least one base station in at most k hops.

Solving the k-hop connectivity problem is important, which
can be seen from the following. First, it limits the commu-
nication path length between any source/destination pair in
the network. By keeping k small as the number of network
nodes grows, the scalability of the network can be guaranteed.
Second, limiting the maximum hop count between a user
and a base station may provide additional benefits, e.g. in
localization. Particularly, it was shown in [4] that the location
estimation error of a sensor increases with its hop count to the
anchors (e.g. base stations with known location). By limiting
the maximum distance between a user and a base station, it
also helps to improve the localization accuracy.

To solve the k-hop connectivity problem, we can start by
assigning k a small positive integer. For k = 1, the system
is essentially the same as a Cellular system, whose properties
have been extensively explored. For k = 2, the system is
practical because it has comparatively simpler system and
protocol design than those with k > 2. The 2-hop connectivity
network does not require complicated ad hoc routing while
enjoying a better service coverage than the 1-hop connectivity
network [5]. In this paper, we develop an analytical model to
investigate the performance of the 2-hop connectivity network.
We obtain the closed-form formula for calculating the exact
connectivity probability. To the best of our knowledge, the



exact 2-hop connectivity probability has not been presented so
far for 2-D networks. Unlike other work which focuses only on
the unit disk communication model, a generic channel model
is used in our analysis where the results can also be applied
to the unit disk model. In addition to the exact result, an
approximate connectivity probability is also derived. Although
the approximate connectivity probability is less accurate but
gives better intuitive understanding of the interactions among
the performance impacting factors. At the current stage, we
assume the nodes in the network are static. Nevertheless, we
expect our analysis in this paper to hold with a good degree of
approximation also for the mobile networks with the random
waypoint mobility model.

The rest of this paper is organized as follows. In Section II
we introduce related work on infrastructure-based wireless
networks. In Section III we define the system model. In
Section IV we present the analysis of the connectivity prob-
ability under a generic radio channel model. In Section V
we focus on two widely used radio channel models, i.e. the
unit disk communication model and the log-normal shadowing
model, and their analytical and simulation results, followed by
conclusions in Section VI.

II. RELATED WORK

Connectivity probability has been studied in the literature
for 1-D [6], [7], [8] and 2-D [9], [10], [7] wireless networks
with infrastructure support.

In 1-D networks, Miorandi and Altman [6] investigated
the probability that a wireless node separated from the base
station by a given Euclidean distance is connected (either
directly or via multi-hop paths) to the base station under the
assumption that other nodes are randomly distributed along the
line. The unit disk communication model with a deterministic
and random transmission range were considered. Dousse and
Thiran [7] considered a network where nodes are Poissonly
distributed on a line segment of length L and two base stations
are placed at both ends of the line segment. Assume the unit
disk model, they obtained analytically the probability that a
node at distance x from the left base station is connected to at
least one base station. For a network with a similar setup as
in [7] but generalized to m base stations arbitrarily distributed
in the line segment, Ng et al. [8] obtained analytically the
probability that all nodes in the network are connected to at
least one base station under the unit disk model.

For a 2-D network where a total of n nodes are uniformly
distributed in a circular area of unit radius, Ojha et al. [9]
obtained a lower bound on the transmission range required
for all nodes in the network to be asymptotically connected to
the base station at the center of the circular area as n → ∞
under the unit disk model. Assume that both base stations and
users are Poissonly distributed in R2 and consider log-normal
channel model, Mukherjee et al. [10] obtained a lower bound
on the probability that an arbitrary user cannot reach any base
station in less than or equal to t hops using the assumption
that the event that one user can reach any base station in k
hops is independent of the event that another user being able

to reach any base station in k hops. In [7], Dousse and Thiran
considered a square area where base stations are placed at the
four corners of the square area, and other nodes are Poissonly
distributed in the square area with known density λ. They
obtained the probability that an arbitrary node is connected to
at least one base station as λ→∞ under the unit disk model.

In the literature, most results on connectivity probability in
2-D networks are only applicable when the number of nodes
(or the node density) goes to infinity (e.g. [9], [7]). Whether the
results are still valid when the number of nodes does not go to
infinity is yet to be justified. In this paper we assume users are
Poissonly distributed with finite user density. Many studies on
the networks with finite number of nodes only provide loose
bounds to the connectivity probability (e.g. [10]). We obtain
analytically the exact connectivity probability considering the
maximum allowable hop count from each user to the base
stations is two. A generic radio channel model is considered
in the study. In addition, we also include the analytical ap-
proximate connectivity probability which provides reasonably
close results to the true values. Our work on 1-D networks
under the unit disk model can be found in [11].

III. SYSTEM MODEL

We consider an infrastructure-based 2-D wireless network,
as shown in Fig. 1, wherein base stations are deployed
regularly at grid points, while users are randomly distributed in
the same area following a Poisson distribution. We analyze the
k-hop connectivity probability for k = 2, i.e. the probability
that all users can access at least one base station (BS) within
two hops, of the network by investigating a subnetwork in a
square area bounded by four adjacent BSs. Let L be the side
length (in kilometers) of the square area and ρ be the user
density (in users per square kilometer). The probability that
k users are found in the area A (with size |A|) is given as
f(k,A) = (ρ|A|)ke−ρ|A|

k! , k ≥ 0.

Fig. 1. An Infrastructure-based Two-Dimensional Wireless Network.

Assuming a generic channel model C, let gCu(x) be the
probability that two users separated by an Euclidean distance
x are directly connected. Similarly, denote by gCb (x) the
probability that a user and a BS separated by an Euclidean
distance x are directly connected. We assume that the event
that two users (or a user and a BS) are directly connected
is independent of the event that another two users (or a
user and a BS) are directly connected. We also assume that



gCb (x) ≥ gCu(x). This assumption is justified because it is often
the case that a BS can not only transmit at a larger transmission
power than a user/wireless node, it can also be equipped with
more sophisticated antennas, which make it more sensitive to
the transmitted signal from a user/wireless node.

IV. ANALYSIS OF THE CONNECTIVITY PROBABILITY

Without loss of generality, assume that the BS located at
the bottom left corner of the considered square area is labeled
as BS1 and has coordinate (0, 0). Similarly, the BSs at the
bottom right, top left and top right corners are labeled as
BS2, BS3 and BS4, and have coordinates (L, 0), (0, L) and
(L,L) respectively. With a slight abuse of the notations let
BS1 to BS4 also denote the coordinates of the BSs. Denote
by G(L, ρ, C) the subnetwork in a square area with side length
L, user density ρ and channel model C. Denote by S the area
of the subnetwork. We investigate the probability pc that all
users in G(L, ρ, C) are connected to at least one of the BSs at
the four corners of the square area in at most two hops. The
probability that a user which is located at x ∈ S is directly
connected to either BS is equal to one minus the probability
that the user is directly connected to none of the four BSs.
Note that the probability that a user is directly connected to a
BS is independent of the probability that the user is directly
connected to another BS. Therefore,

p1(x) = 1−
4∏
i=1

(1− gCb (‖x−BSi‖)) (1)

where ‖.‖ denotes the Euclidean norm. In order to derive pc
we need the following lemmas.

Lemma 1. Let K1 be the set of users in the subnetwork
G(L, ρ, C) which are directly connected to either BS, then
K1 has an inhomogeneous Poisson distribution with density
ρp1(x) where p1(x) is given by Eq. (1).

Proof: Let K denotes the set of users in G(L, ρ, C). Then
K has a homogeneous Poisson distribution with density ρ
over the square area S = [0, L]2. Consider a realization of
K and remove a user located at x from this realization with
probability 1− p1(x), independent of the removal probability
of other users. The remaining set of users forms a realization
of K1. Note that the above procedure which removes/retains
users independently with some probabilities is called thinning
and it generates an inhomogeneous Poisson point process of
density function ρp1(x) [12, pp. 9-10]. That is, let N (K1) be
the number of users in K1, then

Pr(N (K1) = j) =
(
∫
S
ρp1(x)dx)j

j!
e−

∫
S
ρp1(x)dx. (2)

Refer to [12] for the detailed proof.

Lemma 2. Let pc(Y ) be the 2-hop connectivity probability
of G(L, ρ, C) conditioned on that the number of users directly
connected to either BS is n and they are located at Y =
{y1,y2, · · · ,yn : yi ∈ S = [0, L]2, 1 ≤ i ≤ n}; let pY (Y )
be the probability density function (pdf) of Y conditioned on

that there are n users directly connected to either BS. The
following properties hold.

(i) pY (Y ) =

n∏
i=1

p1(yi)∫
S
p1(x)dx

(3)

(ii) pc(Y ) = e−
∫
S
ρ(1−p1(x))

∏n
i=1(1−g

C
u(‖x−yi‖))dx (4)

Proof: For n = 1, pY (y1) = p1(y1)∫
S
p1(x)dx

is the probability
that a user in K1 is located at y1. As a consequence of
Lemma 1, p1(yi) and p1(yj) are mutually independent for
i 6= j, the result follows for Eq. (3).

For Eq. (4), note that a user at x is not connected to any BS
in at most two hops if it is not directly connected to any BS
(the probability is 1−p1(x)) and it is not directly connected to
any user located at yi ∈ Y (the probability is 1−gCu(‖x−yi‖)
for 1 ≤ i ≤ n). Therefore, user at x cannot access any BS in
at most two hops with probability

(1− p1(x))

n∏
i=1

(1− gCu(‖x− yi‖)). (5)

Eq. (5) is valid when x /∈ Y . When x = yj for arbitrary j, viz.
the user being considered is in K1, the probability that user at
x cannot access any BS in at most two hops should be zero.
If we assume that gCu(0) = 1, then Eq. (5) is still valid when
x ∈ Y . Applying the thinning procedure and the technique
used in Lemma 1, we have the number of users which are
neither directly connected to any BS nor directly connected to
any of the users at Y is an inhomogeneous Poisson random
variable with density ρ(1− p1(x))

∏n
i=1(1− gCu(‖x− yi‖)).

The result follows immediately.

Theorem 1 (Exact result). Denote by pc the 2-hop connectivity
probability of G(L, ρ, C), i.e. the probability that all users in
the subnetwork G(L, ρ, C) are connected to either BS in at
most two hops. Then

pc =

∞∑
n=0

Pr(N (K1) = n)

[∫
Sn
pc(Y )pY (Y )dY

]
(6)

where pc(Y ) and pY (Y ) are given by Lemma 2; S = [0, L]2;
Pr(N (K1) = n) is given by Eq. (2). When n = 0, we declare∫

Sn
pc(Y )pY (Y )dY

∣∣∣∣
n=0

= pc(Y )pY (Y )

∣∣∣∣
n=0

= e−
∫
S
ρ(1−p1(x))dx.

Proof: Eq. (6) directly follows from the law of total
probability, so the details are omitted here.

Eq. (6) gives an exact formula for the connectivity prob-
ability. However, the equation is very time consuming to
compute numerically. In the following, we derive an approxi-
mate formula for the connectivity probability which consumes
less computational power. The approximation relies on the
assumption that the event that a user is connected to either BS
in two hops and the event that another user is connected to
either BS in two hops are independent. The following lemma
proves, in a way, that such events are dependent.



Lemma 3. Let h(x) be the probability that a user at x is
not directly connected to any user in K1; let h(x1,x2) be
the probability that two users, at x1 and x2 respectively, are
not directly connected to any user in K1. Then, h(x1,x2) ≥
h(x1)h(x2).

Proof: To begin the proof, imagine we partition S =
[0, L]2 into (L/dl)2 non-overlapping square area of differential
side length dl. Let dSy be the differential area of side length
dl and centered at y. Since dl is a very small value, the
probability that there exist more than one user within dSy

can be ignored and the probability that there exists exactly
one user within dSy is ρdSy . The probability that there exists
a user in dSy which is also in K1 is then given by ρp1(y)dSy .
Note that the complement of the previous probability, i.e. the
probability that either there is no user in dSy or the user in
dSy is not in K1, is 1 − ρp1(y)dSy . In addition, note that
the users at x and y are directly connected to each other with
probability gCu(‖x−y‖). Therefore, the probability that a user
at x is not directly connected to a user in K1 and is located
in dSy is (1 − gCu(‖x − y‖))ρp1(y)dSy . So, the probability
that the user at x is not directly connected to any of the users
in K1 is given by

h(x) =
∏

dSy⊂S

[
(1− gCu(‖x− y‖))ρp1(y)dSy

+(1− ρp1(y)dSy)] (7)

= e−
∫
S
gCu(‖x−y‖)ρp1(y)dy (8)

where from Eq. (7) to Eq. (8) we apply e−z = 1 − z
for very small value of z. Using the similar approach and
the probability that two users, at x1 and x2, are not di-
rectly connected to a user in K1 and is located in dSy is
(1− gCu(‖x1 − y‖))(1− gCu(‖x2 − y‖))ρp1(y)dSy , we have

h(x1,x2) =
∏

dSy⊂S

[
(1− gCu(‖x1 − y‖))(1− gCu(‖x2 − y‖))

ρp1(y)dSy + (1− ρp1(y)dSy)] (9)

= e−
∫
S[gCu(‖x1−y‖)+gCu(‖x2−y‖)]ρp1(y)dy

× e
∫
S[gCu(‖x1−y‖)gCu(‖x2−y‖)]ρp1(y)dy (10)

≥ h(x1)h(x2) (from Eq. (8))

where the derivation from Eq. (9) to Eq. (10) is similar to the
derivation from Eq. (7) to Eq. (8).

Before obtaining the approximate result of the 2-hop con-
nectivity probability, we introduce the following lemma.

Lemma 4. Denote by pa(x) the probability that the user at
x is connected to either BS in at most two hops. Then

pa(x) = 1− (1− p1(x))(1− p2(x)) (11)

where p1(x) is given by Eq. (1); p2(x) = 1 − h(x) is the
probability that a user located at x is directly connected to at
least one user in K1 where h(x) is given by Eq. (8).

Proof: The result follows immediately from the observa-
tion that the event that a user at x is directly connected to

either BS is independent of the event that the same user is
directly connected to at least one user in K1.

Theorem 2 (Approximate result). Denote by pc the 2-hop
connectivity probability of G(L, ρ, C), i.e. the probability that
all users in the subnetwork G(L, ρ, C) are connected to either
BS in at most two hops. Assume that the event that a user
is connected to either BS in at most two hops is independent
of the event that another user is connected to either BS in at
most two hops. Then

pc = e−
∫
S
ρ(1−pa(x))dx (12)

where pa(x) is given by Eq. (11) and S = [0, L]2.

Proof: Let K2 be the set of users in G(L, ρ, C) which are
connected to either BS in exactly two hops. Together with the
definition of K1 in Lemma 1, let K1 +K2 = K\(K1 +K2)
be the set of users in G(L, ρ, C) which are not connected to
either BS in at most two hops. Apply the thinning procedure
for K, i.e. consider a realization of K and remove each
user located at x independently from this realization, with
probability pa(x). The resulting set of users can be viewed as
a realization of K1 +K2 under our assumption that the event
that one user is connected to either BS in at most two hops
is independent of the event that another user is connected to
either BS in at most two hops, and the probability that user at x
is connected to either BS in at most two hops is pa(x). Using
the same technique as that used in the proof of Lemma 1, it
can be shown that K1 +K2 has an inhomogeneous Poisson
distribution with density ρ(1 − pa(x)). Then all users in
G(L, ρ, C) are connected to either BS in at most two hops
if and only if N (K1 +K2) = 0. The result follows.

V. SIMULATIONS

Based on the above analysis we discuss the 2-hop connec-
tivity probability performance under two specific examples of
the generic radio channel model, i.e. unit disk communication
model and log-normal shadowing model.

A. Unit Disk Communication Model

In the unit disk model U , assume that two users are directly
connected if and only if their Euclidean distance is less than
or equal to r; a user and a BS are directly connected if and
only if their Euclidean distance is not more than R. That is,

gUu (x) =

{
1 if x ≤ r
0 otherwise,

gUb (x) =

{
1 if x ≤ R
0 otherwise.

where r and R are predetermined values, commonly known
as the transmission ranges. Typically we have R > r.

B. Log-normal Shadowing Model

The log-normal model L [13] is commonly used to model
the real world signal propagation considering the shadowing
effect caused by surrounding environment. In this model, we
formulate the received power at a destination user as prx =
p0 − 10α log10

l
d0

+Nσ , where prx is the received power (in
dBmW) at the destination user; p0 is the power (in dBmW) at



a reference distance d0 from the source user; α is the path loss
exponent; Nσ is a Gaussian random variable with zero mean
and variance σ2; l is the Euclidean distance between the two
users (or a user and a BS depending on the context). A source
user can establish a direct connection to a destination user if
the received power at the destination user prx is greater than or
equal to a certain threshold power puth. Similarly, a source user
can establish a two-way direct connection to a destination BS
if the received power at the destination BS prx is greater than
or equal to a certain threshold power pbth. In this paper, we
assume that wireless connections between users, and between
users and BSs, are symmetric. Note that when σ = 0, the log-
normal model reduces to the unit disk model. Due to this fact,
we assign puth = p0 − 10α log10

r
d0

, pbth = p0 − 10α log10
R
d0

so that the results under log-normal model can be compared
with the results under the unit disk model later. It can be
shown that under the log-normal model, gLu (x) = Pr(prx ≥
puth) = Q( 10α

σ log10
x
r ) where Q(y) = 1√

2π

∫∞
y
e−

x2

2 dx is the
tail probability of the standard normal distribution. Similarly,
gLb (x) = Q( 10α

σ log10
x
R ).

C. Analytical and simulation results

Fig. 2. Connectivity probability with L changing under the unit disk model,
R = 1, r = 0.5, ρ = 0.1, 1, 10, 100 respectively.

Fig. 2 shows the connectivity probability given different val-
ues of L and ρ under the unit disk model. The analytical results
are verified by the simulation results obtained from 40000
randomly generated network topologies. Due to tremendous
amount of time required for computing the exact analytical
results, only the approximate analytical results are plotted.
However, the figure shows that the approximate analytical
results match the true values in all circumstances.

Similarly, Fig. 3 shows the results under the log-normal
model, specifically for α = 2 and σ = 2. Again the approxi-
mate analytical results are verified by the simulation results
obtained from 40000 samples. The approximate analytical
results match the true values when the user density is low
(ρ = 0.1, 1). The discrepancy between the approximate results
and the true values occurs when the user density is high
(ρ = 10, 100), but it is still within reasonable range.

VI. CONCLUSIONS

In this paper, we consider a square area where four base
stations are placed at the corners of the square area, and users

Fig. 3. Connectivity probability with L changing under the log-normal model,
R = 1, r = 0.5, α = 2, σ = 2, ρ = 0.1, 1, 10, 100 respectively.

are Poissonly distributed in the same area with known density.
Under a generic channel model, we derived the closed-form
formulas for the (exact and approximate) probability that all
users can access at least one base station in at most two
hops. Taking the unit disk model and log-normal shadowing
model as two specific examples of the generic channel model,
the formulas are verified by simulations. The analysis can be
useful in network planning, design and resource management.

In future, we plan to expand the current work on 2-hop
connectivity to k-hop connectivity for k > 2.
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