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Abstract—In this paper, we study the information propagation
speed in a 1D mobile ad hoc network formed by vehicles Poissonly
distributed on a highway and travelling in the same direction but
with random Gaussianly-distributed speeds, independent between
vehicles. Assume that time is divided into time slots of equal
length and that each vehicle changes its speed at the beginning
of each time slot, independent of its speed in other time slots. We
derive analytical formulas for the IPS in the above network under
the unit disk model. Using the formula, we can straightforwardly
study the impact on the information propagation speed of various
parameters such as vehicle density, speed and radio range. The
accuracy of the formula is validated using simulations. The
research provides useful guidelines on the design of vehicular
ad hoc networks.

I. INTRODUCTION

Vehicular ad hoc networks (VANETs) have attracted sig-
nificant interest in recent years due to a large number of
potential applications. In this paper, we study the expected
propagation speed for a piece of information to be broadcasted
along the road, referred to as the information propagation
speed (IPS). Due to the mobility of vehicles, the topology
of a VANET is changing over time. Further, traffic density
on a road can vary significantly depending on time-of-day
or day-of-week. Therefore the properties of the information
propagation in a VANET can be quite different from those
in a static network. Our analysis considers the impact on the
IPS of various parameters, e.g. radio range, vehicular traffic
density and the time variation of vehicular speed.

It has been shown that a VANET is usually partitioned into
a number of clusters [1], [2], where a cluster is a maximal
set of vehicles in which every pair of vehicles are connected
by at least one path. Due to the mobility of vehicles, the
clusters are splitting and merging over time. Therefore the
information propagation in a VANET is typically based on a
store-and-forward scheme as that in a delay tolerant network
[1]. Consider the example illustrated in Fig. 1, a piece of
information starts to propagate from the origin toward the
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positive direction of the axis at time t0. The vehicles that have
received this piece of information are referred to as informed
vehicles, where other vehicles are uninformed. As indicated
by the left most ellipse, the first informed vehicle is inside a
cluster of four vehicles at time t0. At time t1, the message is
forwarded, in a multihop manner, to the frontmost vehicle in its
cluster. The propagation of the message within a cluster, which
begins at t0 and ends at t1, is called a forwarding process. The
propagation speed in a forwarding process is determined by
the per-hop delay β, which is the time required for a vehicle to
receive and process a message before it is available for further
retransmission [3]. The value of β depends on the practical
implementation, and a common assumption for the value of β
is 4ms [3]. We show that the per-hop delay has a significant
impact on the IPS, especially when the vehicle density is high.

Fig. 1. Illustration of the topology of a VANET at different time instance.
The positive direction of the axis is the direction of information propagation.

Define the head (resp. tail) at time t to be the informed
(resp. uninformed) vehicle with the largest (resp. smallest)
coordinate at time t. We say two vehicles can directly com-
municate with each other iff their Euclidean distance is not
greater than the radio range r0 (We are adopting the unit disk
model. Other channel models are expected to have a similar
IPS, which is left as future work.). As shown in Fig. 1, at
time t1 the tail is outside the radio range of the head. Then a
catch-up process begins, during which the informed vehicles
hold the information until the head catches up the tail. We
investigate the IPS by studying both the forwarding process
and the catch-up process.

The main contributions of this paper are: firstly, we provide
analytical results on the distribution of the time required for a
catch-up process. The impact of vehicle density, vehicle speed
distribution and vehicle speed variation over time are consid-
ered, where previous research (e.g. [2], [4]) has been based on
the assumption that vehicle speed does not change over time.
Secondly, a first passage phenomenon, to be introduced later,



is considered for the accurate analysis of the catch-up process.
Thirdly, we report a closed form equation for the distribution
of the length of a cluster, where in previous research only
a numerical solution [5] or an approximate result [2] was
provided. Based on the above results we derive the analytical
results for the IPS, which provides useful guidelines on the
design of a mobile VANET.

The rest of this paper is organized as follows: Section II
reviews the related work. Section III introduces the network
model. The analysis on the catch-up process is given in Section
IV, followed by the analysis on the forwarding process in
Section V. Based on the above results, we derive the IPS in
Section VI. Finally Section VII concludes this paper.

II. RELATED WORK

The IPS is an important metric for the performance of
VANETs. Through simulations, Wu et al. [3] showed that
the IPS varies significantly with different vehicle density on
a highway. In [5] Yousefi et al. provided analytical results
on the distribution of the inter-vehicle distance in a 1D
VANET under the Poisson arrival model: in the Poisson arrival
model, the number of vehicles passing an observation point
on the road during any time interval follows a homogeneous
Poisson process with intensity λ. They further analyzed the
connectivity distance, a quantity which is similar to the cluster
length introduced later in this paper. However, they did not
provide a closed form formula for the distribution of the
cluster length. In [4] Agarwal et al. studied the IPS in a
1D VANET where vehicles are Poissonly distributed in the
network, the vehicles are assumed to move at the same speed
but either in the positive or negative direction of the axis.
They derived upper and lower bounds for the IPS, which gave
a hint on the impact of vehicle density on the IPS but the
bounds are not tight because many factors were ignored in
their analysis. In [2] Wu et al. considered a 1D VANET where
vehicles are Poissonly distributed and the vehicle speeds are
uniformly distributed in a designated range. They provided
a numerical method to calculate the IPS when the vehicle
density is either very low or very high. Same as [4], their
analysis only considered a constant speed over time. In this
paper, the time variation of vehicle speed is considered and is
shown to have a significant impact on the IPS.

III. NETWORK MODEL

This paper considers a synchronized random walk model.
Specifically, time is divided into time slots with equal length τ .
Each vehicle randomly chooses its new speed at the beginning
of each time slot, independent of other vehicles and its speed
in other time slots, according to a Gaussian distribution with
a mean value E[v]. The Gaussian speed distribution is a
commonly used assumption for the VANETs on the highway
[5]–[7]. A positive (resp. negative) value of the speed means
that the vehicle is travelling in the same (resp. opposite)
direction as the direction of information propagation. The
speed of a vehicle can be considered as having a constant
component E[v] and a variable component with a zero mean.

Accordingly the vehicular network can be decomposed into
two components: a network in which vehicles travel at a
constant speed and a network in which vehicles travel at
speeds following a zero mean Gaussian distribution. Our
analysis focuses on the IPS in the second network component.
The first network component is considered separately and is
combined into the result at the end of the analysis. Define
fv(v) to be the pdf (probability density function) of the
speed distribution. As a consequence of the Gaussian speed
distribution: fv(v) = 1

σ
√

2π
exp(−v2

2σ2 ).
The value of the time interval τ depends on practical

conditions, e.g. a heavy truck may change its speed much
less frequently than a sports car. Reasonable values for the
time interval can be from 1s to 25s [8]. The vehicle mobility
parameters, i.e. E[v], σ and τ , are taken from practical
measurements. Typical values for E[v] and σ are given in
[7], where the usual record time intervals for a vehicle speed
monitor are τ = 1s, 5s [9]. We conduct our analysis in
the discrete time domain (t = iτ ) to obtain a closed-form
analytical equations which give better insight into the impact
of different parameters on the IPS. Extension to the continuous
time domain is straightforward.

We adopt a commonly used traffic model in vehicular traffic
theory [6] in which vehicles travel independently in the same
direction on a 1D infinite line and follow the Poisson arrival
model with intensity λ veh/s. It is shown in [5] that if the vehi-
cle speeds do not change over time, then at any time instant the
spatial distribution of vehicles follows a homogeneous Poisson
process with intensity ρ = λ

∫∞
−∞

fv(v)
v dv. Using the above

result and mathematical induction, it can be shown that under
the model considered in this paper, i.e. allowing time variation
of vehicle speeds, the spatial distribution of vehicles still has
the above property.

IV. ANALYSIS ON THE CATCH-UP PROCESS

Without loss of generality, we assume the catch-up process
starts at time 0. Define lc to be the initial Euclidean distance
between the head and the tail at time 0. For convenience, a
catch-up process where the distance between the head and tail
is lc at the beginning of the catch-up process is referred to as
a catch-up process with gap lc. Denote by Hi (resp. Pi) the
ith vehicle to the left of the head H0 (resp. to the right of
the tail P0) at time 0, as shown in Fig. 2. Define wi to be the
Euclidean distance between Hi and H0 at time 0.

Denote by p(y, t) the probability that the displacement of
the head is y at time t, given that the head is positioned at 0 at
time 0. Note that the head vehicle at time 0 is not necessarily
the head vehicle at time t because the original head may be
overtaken by another informed vehicle during (0, t).

A. The movement of the head and the tail

In this subsection, we ignore temporarily the possibility of
overtaking, i.e. we consider a basic catch-up process involving
only the vehicle, which is the head at time 0, catching up with
the vehicle, which is the tail at time 0. Therefore the movement
of the head is the same as the movement of a single vehicle.



Fig. 2. Illustration of the VANET at the beginning of a catch-up process.

Fig. 3. Illustration of the displacements of the head and tail at time t in a
basic catch-up process.

It is obvious that p(y, τ) is determined by the speed distri-
bution because the speed does not change during a time slot:

p(y, τ) =
1

στ
√

2π
exp(

−y2

2(στ)2
) (1)

Due to the independence of the speeds of the vehicle in
different time slots, we have:

p(y, iτ) =

i-fold convolution︷ ︸︸ ︷
(p ∗ p ∗ ... ∗ p) (y, τ) (2)

For t = iτ , we can obtain:

p(y, t) = p(y, iτ) =
1

σt

√
2π

exp(
−y2

2σ2
t

) (3)

where σ2
t = i(στ)2 = t

τ (στ)2 = tσ2τ .
Denote by p̃(ỹ, t) the probability that the displacement of

the tail is ỹ at time t, with regards to its location at time 0. Due
to symmetry of the Gaussian distribution: p̃(ỹ, t) = p(ỹ, t) =
p(−ỹ, t).

B. Catch-up delay in a basic catch-up process

Define the catch-up delay to be the time taken from the
start of the catch-up process till the time when the head and
tail move into the radio range of each other for the first time,
i.e. t2 − t1 in Fig. 1. A catch-up delay is t iff the distance
between the head and tail reduces to r0 at t for the first time
since time 0. This first passage phenomenon has a significant
impact on the analysis of the catch-up delay.

Denote by pH(z, t) the probability that the reduction of the
distance between the head and the tail is z at time t, with
regards to their original distance at time 0. As illustrated in
Fig. 3, it can be shown that:

pH(z, t) =
∫ ∞

−∞
p(y, t)p̃(z − y, t)dy (4)

= (p ∗ p)(z, t) =
1

σ̃t

√
2π

exp(
−z2

2σ̃2
t

) (5)

where σ̃2
t = 2tσ2τ .

Define ξ(z, t) to be the first passage probability [10] of
pH(z, t), viz the probability that the reduction of distance
between the head and tail is z for the first time at time t.

The relationship between ξ(z, t) and pH(z, t) can be studied
as the first passage time in a stochastic process [11].

We apply a standard procedure to determine the first passage
probability [10], [11]. Consider a class of random walks start
at time 0 and walk from point 0 to z′ that must proceed by
going through a point z. The transition from 0 to z′ can be
decomposed into two independent stages: in the first stage an
agent walks from 0 to z for the first time in time t; in the
second stage the agent walks from z to z′ in the remaining
time t′ − t, not necessarily for the first time. Then we can
obtain the following equation [10], [11]:

pH(z′, t′) =
t′∑

t=0

ξ(z, t)pH(z′ − z, t′ − t) (6)

The convolution in Eq. 6 can be simplified by the Z-
transform with regards to t, which is denoted by superscript ∗.
Inspired by Eq. 6.4 in [11], pH(z, t) in Eq. 5 can be rewritten
in the following form:

pH(z, t) =
1
2π

∫ ∞

−∞
exp(−jzα− σ̃2

t

2
α2)dα (7)

where j denotes
√−1.

Then perform the Z-transform on Eq. 7 with regards to t:

p∗H(z, s) =
∞∑

t=0

e−stpH(z, t) (8)

=
1
2π

∫ ∞

−∞
exp(−jzα)

∞∑
t=0

exp(−st) exp(− σ̃2
t

2
α2)dα

With σ̃2
t = 2tσ2τ , there holds:

p∗H(z, s) (9)

=
1
2π

∫ ∞

−∞
exp(−jzα)

∞∑
t=0

exp(−st) exp(−tσ2τα2)dα

=
1
2π

∫ ∞

−∞
exp(−jzα)(s + σ2τα2)−1dα (10)

=
1
2π

π exp(−z
√

s/(σ2τ))√
sσ2τ

(11)

Then according to the convolution theorem for the Z-
transform, from Eq. 6 we have:

p∗H(z′, s) = ξ∗(z, s)p∗H(z′ − z, s) (12)

ξ∗(z, s) =
p∗H(z′, s)

p∗H(z′ − z, s)
= exp(−z

√
s/(σ2τ)) (13)

Then by the inverse Z-transform we can obtain:

ξ(z, t) =
z

2t
√

πσ2τt
exp(− z2

4σ2τt
) (14)

C. Catch-up delay considering overtaking permitted

In this subsection, we include the possibility of overtaking
in the catch-up process, in a way that balances the trade-off
between the accuracy and complexity of the result. Denote
by Fξn(z, t) the probability that the reduction of the distance
between the head and tail has reached z during time (0, t).



The subscript n indicates that n vehicles to the left of the head
(H0) at time 0 are considered, i.e. we consider the possibility
that one of these n vehicles (H1, H2,...,Hn) may overtake H0

during (0, t) and become the new head. It is referred to as
a n-overtake catch-up process. For a basic catch-up process
studied in the previous subsection, i.e. n = 0, Fξ0(z, tc) is the
cdf of ξ(z, t):

Fξ0(z, tc) =
tc∑

t=0

ξ(z, t) =
tc∑

t=0

z

2t
√

πσ2τt
exp(

−z2

4σ2τt
) (15)

The distance between the head and tail does not reduce
to z iff none of the distances between Hi and the tail for
i = 0, 1, ..., n reduces to z. Therefore:

1− Fξn(z, tc) = (1− Fξ0(z, tc)) (16)
n∏

i=1

(1−
∫ ∞

0

Fξ0(z + wi, tc)fwi(wi)dwi)

where wi is the distance between Hi and H0 at time 0, fwi(wi)
is the pdf of wi. It can be shown that [12]:

fwi(wi) =
ρe−ρwi(ρwi)i−1

(i− 1)!
(17)

The choice of parameter n depends on the trade-off be-
tween computational complexity and accuracy, which will be
discussed in Section IV-E. Finally the expected delay (tc) for
a catch-up process with gap lc is:

E[tc|lc] ≈
∞∑

t=0

(1− Fξn(lc − r0, t)) (18)

D. Distribution of the gaps lc

Denote by fl(l) the pdf of the Euclidean distance between
any two adjacent vehicles. Then: fl(l) = ρe−ρl. Denote by
flc(lc) the pdf of the Euclidean distance between any two
adjacent but disconnected vehicles. It is straightforward that:

flc(lc) =
fl(lc)

1− ∫ r0

0
fl(l)dl

, where lc > r0 (19)

E. Simulation results

In this section, we report on simulations to validate the
accuracy of analytical results. The simulations are conducted
in a VANET simulator written in C++. Each point shown in
the figures is the average value from 2000 simulations. The
radio range is r0 = 250m [2]. The mobility parameters are
E[v] = 25m/s, σ = 7.5m/s [7]. Only the results for τ = 5s
are shown in this section since the results for τ = 1s have a
similar accuracy. The traffic density is λ = 0.3 veh/s, which
results in the Poisson intensity ρ = 0.012 veh/m, which is a
low density resulting in many catch-up processes.

Fig. 4(a) shows the catch-up delay for a catch-up process
with gap lc. It can be seen that the analytical result, which
considers a 4-overtake catch-up process, provides a good
approximation. Although the discrepancy increases as the
length of the gap increases, it can be seen from Fig. 4(b)
that the probability for a gap to be larger than 600m is lower
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Fig. 4. (a) Expected catch-up delay, (b) pdf of the length of the gap (lc).

than 0.1%. Hence using n = 4 is accurate enough in this case.
Further, Fig. 4(b) also verifies that the inter-vehicle distance,
under our network model and the Gaussian speed distribution,
still follows an exponential distribution with ρ = 0.012. This
property is also expected to be the same in some other speed
distributions, an issue which is left as future work.

V. ANALYSIS ON THE FORWARDING PROCESS

A. Cluster length

Define the cluster length x0 to be the Euclidean distance
between the vehicles at the two ends of a cluster. The pdf of
cluster length can be studied as the length of busy period in
queueing theory [13]. In the following we report the pdf of
cluster length without derivation due to page limit.

fx0(x0) =
ρ

eρr0 − 1

b x0
r0
c∑

i=0

(
(−ρe−ρr0)i

i!
(

(x0 − r0i)i +
i(x0 − r0i)i−1

ρ

))
(20)

B. hop count statistics in a cluster

Two vehicles are k hops apart if the length of the shortest
path between them is k hops. Define φk(x0) to be the
probability that two vehicles separated by Euclidean distance
x0 are k hops apart. The probability φk(x0) has been studied in
[14]. Using φk(x0) it is straightforward to calculate E[k|x0],
which is the expected number of hops between two vehicles,
in the same cluster and separated by distance x0.

Define the forwarding delay to be the time required for a
packet to be forwarded from the leftmost vehicle in a cluster to
the rightmost vehicle in the cluster, which is t1− t0 in Fig. 1.
Assume that the cluster does not become disconnected during
the forwarding process since the forwarding delay is relatively
small. Then the expected forwarding delay in a cluster with
length x0 is: E[tf |x0] = βE[k|x0].

C. Simulation results

In addition to the simulation settings introduced earlier,
the per-hop delay is β = 4ms [2]. Fig. 5(a) shows the
expected forwarding delay in a cluster with a given length.
Fig. 5(b) shows the pdf of cluster length. It can be seen that
the analytical results well match the simulation results. The
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Fig. 5. Expected forwarding delay and the pdf of the cluster length.

results for other values of the parameters have similar accuracy
and are omitted.

VI. INFORMATION PROPAGATION SPEED

A. Analytical results

The entire information propagation process can be consid-
ered as a renewal reward process [15, Chapter 7.4] where each
cycle consists of a catch-up process followed by a forwarding
process and the reward is the information propagation distance.
As mentioned in Section III, E[v] is the constant component
of the vehicle speed. It can be shown that [1], [2]:

E[vip] ≈ expected length of one cycle
expected time duration of one cycle

+ E[v] (21)

=

∫∞
r0

lcflc(lc)dlc +
∫∞
0

x0fx0(x0)dx0∫∞
r0

E[tc|lc]flc(lc)dlc + β +
∫∞
0

E[tf |x0]fx0(x0)dx0

+ E[v]

B. Simulation results

In addition to the simulation settings introduced earlier, the
Poisson arrival rate λ is varied from 0 to 1.5. With E[v] = 25,
the spatial distribution of the vehicles follows a homogeneous
Poisson process with intensity ρ ranging from 0 to 0.06. For
completeness of the plot, ρ = 0 is included which means there
is only one vehicle on the road. Therefore the average number
of neighbors (average node degree) varies from 0 to 30, which
represents a large range of traffic densities.
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Fig. 6 shows the expected IPS for τ = 1s and 5s. It
can be seen that when the vehicle density is low, the IPS
is determined by vehicle speeds because there is little packet
forwarding in the network. When the vehicle density increases,

small clusters are formed and the IPS is determined by the
catch-up delay, which is further determined by the mobility of
the vehicles. We can see that the more frequently the speed
changes, the slower the information propagates. This is mainly
because changing speed has the potential to interrupt the catch-
up process, i.e. during a catch-up process, the tail may speed
up and the head may slow down. As the vehicle density further
increases, clusters become larger and the forwarding process
starts to dominate. Therefore the IPS increases until it reaches
the maximum value, which is determined by the per-hop delay
in the forwarding process. The maximum IPS is equal to r0/β.

VII. CONCLUSIONS AND FUTURE WORK

We provided analytical results on the IPS in mobile
VANETs by studying the forwarding process and the catch-up
process. We showed that various parameters such as vehicle
density and speed variation can have significant impact on the
IPS. By taking real world measurements such as λ, E[v], σ
and τ , our results can provide a quick estimation of the IPS
with a good accuracy. The results provide useful guidelines
on the design of mobile VANETs. The analysis in this paper
is conducted under the unit disk communication model and
Gaussian speed distribution. In the future we will consider
the impact of channel randomness as well as a generic speed
distribution.
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